Mathematics 2260H – Geometry I: Euclidean geometry

TRENT UNIVERSITY, Winter 2012

Quizzes

Quiz #1. Tuesday, 17 January, 2012. [10 minutes]

1. Given a line segment AB, use (some of) Postulates I–V, A, and S to show there exists a line segment that is exactly three times the length of AB. [5]

Quiz #2. Tuesday, 24 January, 2012. [10 minutes]

1. Suppose D is the midpoint of side BC (*i.e.* BD = CD) of $\triangle ABC$ and AB = AC. Show that $\angle ADB$ is a right angle. [5]

Quiz #3. Tuesday, 31 January, 2012. [10 minutes]

1. Suppose $\angle ABC$ of $\triangle ABC$ is a right angle. Show that $\angle ACB$ is not a right angle. (Without using Postulate V or any equivalent of it ...) [5]

Quiz #4. Tuesday, 7 February, 2012. [10 minutes]

1. Suppose *ABCDE* is a (convex) pentagon, as in the diagram below.

Show that the sum of the interior angles of ABCDE is equal to six right angles. [5]

- Quiz #5. Tuesday, 14 February, 2012. [10 minutes]
- **1.** Suppose ABCD is a convex quadrilateral such that $\triangle ABC \cong \triangle CDA$. Show that ABCD is a parallelogram.

Quiz #6. Tuesday, 28 February, 2012. [10 minutes]

1. Suppose $AB \parallel DF$ and E is on DF between D and F.

Show that $\operatorname{area}(\triangle ADE) + \operatorname{area}(\triangle BEF) = \operatorname{area}(\triangle BDF)$. [5]

Quiz #7. Tuesday, 6 March, 2012. [10 minutes]

1. Suppose *ABCD* is a convex quadrilateral inscribed in a circle.

Show that $\angle ABC + \angle CDA = 2$ right angles. [5]

Quiz #8. Tuesday, 13 March, 2012. [10 minutes]

1. Suppose the centroid and orthocentre of $\triangle ABC$ are the same point. Show that $\triangle ABC$ is equilateral.

NOTE: Recall that the centroid of a triangle is the point where the three medians – the lines joining each vertex to the midpoint of the opposite site – meet, and that the orthocentre is the point where the three altitudes of the triangle meet.

Quiz #9. Tuesday, 20 March, 2012. [10 minutes]

1. Suppose the incentre of $\triangle ABC$ is on the altitude from A. Show that $\triangle ABC$ is isosceles.

NOTE: Recall that the incentre is the point where the three angle-bisectors of the triangle meet.

Quiz #10. Tuesday, 27 March, 2012. [10 minutes]

1. Suppose $\triangle ABC$ is an isosceles triangle with $\angle BAC$ a right angle.

Show that the Euler line of $\triangle ABC$ is the altitude from A. [5]