Mathematics 2260H - Geometry I: Euclidean geometry
 Trent University, Winter 2012

Quizzes

Quiz \#1. Tuesday, 17 January, 2012. [10 minutes]

1. Given a line segment $A B$, use (some of) Postulates $\mathrm{I}-\mathrm{V}, \mathrm{A}$, and S to show there exists a line segment that is exactly three times the length of $A B$. [5]
Quiz \#2. Tuesday, 24 January, 2012. [10 minutes]
2. Suppose D is the midpoint of side $B C$ (i.e. $B D=C D)$ of $\triangle A B C$ and $A B=A C$. Show that $\angle A D B$ is a right angle. [5]
Quiz \#3. Tuesday, 31 January, 2012. [10 minutes]
3. Suppose $\angle A B C$ of $\triangle A B C$ is a right angle. Show that $\angle A C B$ is not a right angle. (Without using Postulate V or any equivalent of it ...) [5]
Quiz \#4. Tuesday, 7 February, 2012. [10 minutes]
4. Suppose $A B C D E$ is a (convex) pentagon, as in the diagram below.

Show that the sum of the interior angles of $A B C D E$ is equal to six right angles. [5]
Quiz \#5. Tuesday, 14 February, 2012. [10 minutes]

1. Suppose $A B C D$ is a convex quadrilateral such that $\triangle A B C \cong \triangle C D A$. Show that $A B C D$ is a parallelogram.

Quiz \#6. Tuesday, 28 February, 2012. [10 minutes]

1. Suppose $A B \| D F$ and E is on $D F$ between D and F.

Show that area $(\triangle A D E)+\operatorname{area}(\triangle B E F)=\operatorname{area}(\triangle B D F)$. [5]

Quiz \#7. Tuesday, 6 March, 2012. [10 minutes]

1. Suppose $A B C D$ is a convex quadrilateral inscribed in a circle.

Show that $\angle A B C+\angle C D A=2$ right angles. [5]
Quiz \#8. Tuesday, 13 March, 2012. [10 minutes]

1. Suppose the centroid and orthocentre of $\triangle A B C$ are the same point. Show that $\triangle A B C$ is equilateral.
Note: Recall that the centroid of a triangle is the point where the three medians - the lines joining each vertex to the midpoint of the opposite site - meet, and that the orthocentre is the point where the three altitudes of the triangle meet.
Quiz \#9. Tuesday, 20 March, 2012. [10 minutes]
2. Suppose the incentre of $\triangle A B C$ is on the altitude from A. Show that $\triangle A B C$ is isosceles.
Note: Recall that the incentre is the point where the three angle-bisectors of the triangle meet.

Quiz \#10. Tuesday, 27 March, 2012. [10 minutes]

1. Suppose $\triangle A B C$ is an isosceles triangle with $\angle B A C$ a right angle.

Show that the Euler line of $\triangle A B C$ is the altitude from A. [5]

