# Mathematics 2260H - Geometry I: Euclidean geometry <br> Trent University, Winter 2012 

## Assignment $\# \alpha$ <br> A geometry on a cylinder

Due on Monday, 27 February, 2012.
We will define a geometry $\mathcal{G}$ of points and lines on the cylinder $x^{2}+y^{2}=1$ in $\mathbb{R}^{3}$. The points of the geometry $\mathcal{G}$ are the points of the cylinder $x^{2}+y^{2}=1$, i.e. the points $(x, y, z)$ in three-dimensional Cartesian coordinates which satisfy the equation. The lines of the geometry $\mathcal{G}$ are the curves on the cylinder obtained by intersection a plane through the origin in three-dimensional space with the cylinder. (Note that every plane through the origin does indeed intersect the cylinder.) Your task will be to determine some of the basic properties of $\mathcal{G}$.

1. Does $\mathcal{G}$ satisfy Postulate I? Show it does or show that it doesn't. [2]
2. Give (different! :-) examples to show that it is possible for distinct lines $\ell$ and $m$ of $\mathcal{G}$ to intersect in 0 or 2 points of $\mathcal{G}$. [3]
3. Explain why distinct lines $\ell$ and $m$ of $\mathcal{G}$ cannot intersect in exactly 1 point of $\mathcal{G}$. [2]
4. Determine whether or not Playfair's Axiom,

If $P$ is a point not on the line $\ell$, then there is a unique line $m$ through $P$ such that $l$ and $m$ do not intersect in any point.
is true in $\mathcal{G}$. [3]

Note: This extra assignment may only be used to replace your result on Assignment \#1.

