Mathematics 2260H - Geometry I: Euclidean geometry

Trent University, Winter 2012

Assignment \#8 7

Centres

Due on Thursday, 8 March, 2012.

1. Given $\triangle A B C$, show that there is an unique circle passing through all three vertices A, B, and C of the triangle. [4]
Note: This circle is called the circumcircle of $\triangle A B C$, and its centre is the triangle's circumcentre.
2. Suppose that a circle with centre O is tangent to the three sides of $\triangle A B C$ at points R on $A B, P$ on $B C$, and Q on $A C$, respectively.

Show that $\angle O A B=\frac{1}{2} \angle C A B, \angle O B C=\frac{1}{2} \angle A B C$, and $\angle O C A=\frac{1}{2} \angle B C A$. . [6]
Note: This circle is called the incircle of $\triangle A B C$, and its centre is the triangle's incentre. We will show later that every triangle has an (unique!) incircle, though you might well be able to work out why by yourself after working on this problem.

