Mathematics 2260H - Geometry I: Euclidean geometry
 Trent University, Winter 2012

Assignment \#6
Ceva's Theorem
Due on Thursday, 1 March, 2012.
The following result appears to have been first obtained by the Arab mathematician Yusuf ibn Ahmad al-Mu'taman ibn Hud, who also served as the ruler of the Emirate of Zaragoza from 1082 to 1085. It was later rediscovered by an Italian Jesuit, Giovanni Ceva (1647-1734), who also rediscovered Menelaus' Theorem.

Ceva's Theorem: Suppose D, E, and F are points on the sides $B C, A C$, and $A B$, respectively, of $\triangle A B C$. Then $A D, B E$, and $C F$ all meet in a single point G if and only if $\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1$.

1. Prove Ceva's Theorem. [$8=2 \times 4$ each for each direction]

Hint: (\Longrightarrow) You may exploit the fact that the areas of two triangles with the same height are in the same proportion as their bases. Recast the product of ratios as a product of ratios of areas of subtriangles in two different ways, and from there recast is as a third product of ratios of areas of subtriangles.
(\Longleftarrow) Let G be the intersection of $A D$ and $B E$ and extend $C G$ until it intersects $A B$ at H. Use the \Longrightarrow to help show that $H=F$.
2. Use Ceva's Theorem to verify that the three medians of a triangle (i.e. the lines joining each vertex to the midpoint of the opposite side) are concurrent (i.e. meet at a single point).
Note: The point where the three medians of a triangle are concurrent is the centroid of the triangle. It is one of several possible "centres" of the triangle; we will encounter several others later.

