Mathematics 2260H - Geometry I: Euclidean geometry

Trent University, Winter 2012

Assignment \#4 Similarity

Due on Thursday, 9 February, 2012.
Euclid's Elements doesn't get into similarity until Book VI, but it's a concept that comes in very handy for some things, a few of which we will hopefully get to cover later. We will therefore start developing it now.

Definition. $\triangle A B C$ is similar to $\triangle D E F$, often written as $\triangle A B C \sim \triangle D E F$, if corresponding angles are equal (i.e. $\angle A B C=\angle D E F, \angle B C A=\angle E F D$, and $\angle C A B=\angle F D E)$ and the lengths of corresponding sides are all in the same proportion (i.e. $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$).
For this assignment you may use all of Euclid's Postulates, plus all the trigonometry you know. (Or can look up!) The trigonometry is likely to be easier to use.

1. Prove the Side-Side-Side Similarity Criterion. [3]

$$
\text { If } \frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}, \text { then } \triangle A B C \sim \triangle D E F
$$

2. Prove the Angle-Angle Similarity Criterion. [3]

If $\angle A B C=\angle D E F$ and $\angle B C A=\angle E F D$, then $\triangle A B C \sim \triangle D E F$.
2. Prove the Side-Angle-Side Similarity Criterion. [4]

If $\angle A B C=\angle D E F$ and $\frac{A B}{D E}=\frac{B C}{E F}$, then $\triangle A B C \sim \triangle D E F$.

