Mathematics 2260H – Geometry I: Euclidean geometry

TRENT UNIVERSITY, Winter 2012

Assignment #1

A geometry on a paraboloid

Due on Thursday, 19 January, 2012.

We will define a geometry \mathcal{G} of points and lines on (the surface of) the paraboloid $z = x^2 + y^2 - 1$, part of which pictured below. (The diagram was generated using Maple with the command: plot3d(x^2+y^-1,x=-2..2,y=-2..2,axes=boxed);)

The points of the geometry \mathcal{G} are the points of the paraboloid, i.e. the points (x,y,z) in three-dimensional Cartesian coordinates which satisfy the equation $z=x^2+y^2-1$. The lines of the geometry \mathcal{G} are the curves on the paraboloid obtained by intersection a plane through the origin in three-dimensional space with the paraboloid. (Note that every plane through the origin does indeed intersect the paraboloid.) Your task will be to determine some of the basic properties of \mathcal{G} .

- **1.** Suppose P and Q are two distinct points of G. Show that there is a unique line ℓ of G which passes through both P and Q. [3]
- **2.** Give (different! :-) examples to show that it is possible for distinct lines ℓ and m of \mathcal{G} to intersect in 0, 1, or 2 points of \mathcal{G} . [3]
- **3.** Explain why distinct lines ℓ and m of \mathcal{G} cannot intersect in 3 points of \mathcal{G} . [1]
- 4. Determine whether or not Playfair's Axiom,

If P is a point not on the line ℓ , then there is a unique line m through P such that l and m do not intersect in any point.

is true in \mathcal{G} . [3]