Mathematics $2260 H$ - Geometry I: Euclidean geometry
 Trent University, Winter 2012

Assignment \#1

A geometry on a paraboloid

Due on Thursday, 19 January, 2012.
We will define a geometry \mathcal{G} of points and lines on (the surface of) the paraboloid $z=x^{2}+y^{2}-1$, part of which pictured below. (The diagram was generated using Maple with the command: $\operatorname{plot} 3 \mathrm{~d}\left(\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge}-1, \mathrm{x}=-2 . .2, \mathrm{y}=-2 . .2\right.$, axes=boxed);)

The points of the geometry \mathcal{G} are the points of the paraboloid, i.e. the points (x, y, z) in three-dimensional Cartesian coordinates which satisfy the equation $z=x^{2}+y^{2}-1$. The lines of the geometry \mathcal{G} are the curves on the paraboloid obtained by intersection a plane through the origin in three-dimensional space with the paraboloid. (Note that every plane through the origin does indeed intersect the paraboloid.) Your task will be to determine some of the basic properties of \mathcal{G}.

1. Suppose P and Q are two distinct points of \mathcal{G}. Show that there is a unique line ℓ of \mathcal{G} which passes through both P and Q. [3]
2. Give (different! :-) examples to show that it is possible for distinct lines ℓ and m of \mathcal{G} to intersect in 0,1 , or 2 points of \mathcal{G}. [3]
3. Explain why distinct lines ℓ and m of \mathcal{G} cannot intersect in 3 points of \mathcal{G}. [1]
4. Determine whether or not Playfair's Axiom,

If P is a point not on the line ℓ, then there is a unique line m through P such that l and m do not intersect in any point.
is true in \mathcal{G}. [3]

