Mathematics $2260 H$ - Geometry I: Euclidean geometry
 Trent University, Winter 2011
 Quizzes

Quiz \#1. Wednesday, 19 Thursday, 20 January, 2011 [10 minutes]

1. Given a line segment $A B$, construct a point C so that B is on $A C$ and the length of $A C$ is twice the length of $A B$. [5]
Quiz \#2. Wednesday, 26 January, 2011 [10 minutes]
2. Suppose D is the midpoint of the side $B C$ of $\triangle A B C$ and $\angle A D B=\angle A D C$. Show that $A B=A C$. [5]
Quiz \#2. Alternate version. [10 minutes]
3. Suppose D is the midpoint of the side $B C$ of $\triangle A B C$ and $A B=A C$. Show that $\angle B A D=$ $\angle C A D$. [5]
Quiz \#3. Wednesday, 2 Thursday, 3 Monday, 7 February, 2011 [10 minutes]
4. Suppose that in $\triangle A B C$ and $\triangle D E F, G$ and H are the midpoints of $B C$ and $E F$, respectively, and that $A G=D H$ and $B G=E H$. Use an example to show that the given triangles do not have to be congruent. [5]
Quiz \#4. Wednesday, 9 February, 2011 [10 minutes]
5. Given a line segment $A B$, construct a quadrilateral with four equal sides, one of which is $A B$, and a right angle at A. [5]

Quiz \#5. Wednesday, 16 Thursday, 17 February, 2011 [10 minutes]

1. Suppose line segments $A B$ and $C D$ each bisect the other at their intersection point E. Show that $A C$ is parallel to $B D$. [5]
Quiz \#6. Some day or other. [10 minutes]
2. Assuming that the sum of the interior angles of a triangle is equal to two right angles, show that the sum of the interior angles of a (convex!) pentagon is equal to six right angles. [5]
Quiz \#7. Wednesday, 9 March, 2011. [10 minutes]
3. Suppose $A B C D$ is a quadrilateral such that $\angle A B C$ and $\angle B C D$ are right angles. Show that the area of $A B C D$ is equal to $\frac{1}{2}(A B+C D) B C$. [5]
Quiz \#8. Wednesday, 16 March, 2011. [10 minutes]
4. Suppose D, E, and F are collinear points on the side $A C, A B$, and $B C$, respectively, of $\triangle A B C$, and $A D=D C$ and $A B=B E$. Compute $\frac{C F}{F B} .[5]$
Quiz \#9. Wednesday, 23 March, 2011. [12 minutes]
5. Suppose O is the orthocentre of $\triangle A B C$, i.e. the point where the three altitudes meet. Show that A is the orthocentre of $\triangle O B C$. [5]
Quiz \#10. Wednesday, 30 March, 2011. [10 minutes]
6. Suppose that the orthocentre (where the three altitudes meet) and the incentre (where the three angle bisectors meet) of $\triangle A B C$ are the same point. Show that $\triangle A B C$ is equilateral. [5]

Quiz \#11. Wednesday, 36 April, 2011. [10 minutes]

1. Supose D is the circumcentre of $\triangle A B C$ and D is on the same side of $B C$ as A. Show that $\angle B D C=2 \angle B A C$. [5]
