Mathematics 2260H - Geometry I: Euclidean geometry
 Trent University, Winter 2011
 Problem Set \#9
 Applications of Ceva's Theorem
 Due the week of Monday, 21 March, 2011.

The following result appears to have been first obtained by the Arab mathematician Yusuf ibn Ahmad al-Mu'taman ibn Hud, who also served as the ruler of the Emirate of Zaragoza from 1082 to 1085. It was later rediscovered by an Italian Jesuit, Giovanni Ceva (1647-1734), who also rediscovered Menelaus' Theorem.

Ceva's Theorem. Suppose D, E, and F are points on the sides $B C, A C$, and $A B$, respectively, of $\triangle A B C$. Then $A D, B E$, and $C F$ are concurrent (i.e. intersect in a common point) if and only if $\frac{A F}{F B} \cdot \frac{B D}{D C} \cdot \frac{C E}{E A}=1$.
Here is a diagram with the point of concurrence, O, inside the triangle,

\ldots and here is one with the point of concurrence outside the triangle.

1. Recall that the medians of a triangle are the line segments connecting each vertex to the midpoint of the opposite side. Use Ceva's Theorem to verify that the medians of a triangle are concurrent. [10]
Note. Recall that the point in which the medians meet is the centroid of the triangle.
2. Use Ceva's Theorem to verify that the angle bisectors of the interior angles of a triangle are concurrent. [10]
Note. Recall that the point in which the medians meet is the incentre of the triangle.
