# Mathematics 226H - Geometry I: Euclidean geometry <br> Trent University, Winter 2008 

## Solutions to Quizzes

Quiz \#1. Friday, 18 January, 2008. [10 minutes]

1. Given a line segment $A B$, show, using Euclid's system, that there is a point $C$ so that $B$ is on $A C$ and $|B C|=|A B|$. $\quad$. $]$
Solution. Suppose we are given a line segment $A B$. Draw a circle with centre $B$ and radius $A B$ [Postulate 3]. Extend $A B$ past $B$ in a straight line [Postulate 2] until the straight line intersects the circle (on the other side of $B$ from $A$ ) [that it should do so is implicit in Definitions 15 and 17]. Let $C$ be this point of intersection.

$B$, the centre of the circle, is on $A C$ by the construction of $A C$, and $|B C|=|A B|$ since $A B$ and $B C$ are both radii of the circle [Definition 15].

Quiz \#2. Friday, 25 January, 2008. [10 minutes]

1. Suppose that the median from $A$ in $\triangle A B C$ is also an altitude. Show that $\triangle A B C$ is isosceles. [5]


Solution. Let $D$ denote the point where the median from $A$ meets $B C$. Since $A D$ is a median, $|B D|=|C D|$, and since it is also an altitude, $\angle A D B=\angle A D C=90^{\circ}$. As we also have $|A D|=|A D|$ - any line segment is just as long as itself - it follows by the SAS congruence criterion that $\triangle A D B \cong \triangle A D C$. Hence $|A B|=|A C|$ and $\angle A B C=\angle A B D=$ $\angle A C D=\angle A C B$, so $\triangle A B C$ is isosceles.

Quiz \#3. Friday, 1 February, 2008. [10 minutes]

1. Show that a rhombus inscribed in a circle must be a square. [5]


Solution. Suppose $A B C D$ is a rhombus inscribed in a circle and $O$ is the centre of the circle. Since $O A, O B, O C$, and $O D$ are all radii of the circle, we have $|O A|=|O B|=$ $|O C|=|O D|$, and since $A B C D$ is rhombus, we also have $|A B|=|B C|=|C D|=|D A|$. By the SSS congruence criterion it follows that $\triangle O A B \cong \triangle O B C \cong \triangle O C D \cong \triangle O D A$. Note also that each of these triangles is isosceles. It follows that $\angle A B C=2 \angle A B O=$ $\angle B C D=\angle C D A=\angle D A B$. Since the angles of a quadrilateral must add up to $360^{\circ}$, it follows that $\angle A B C=\angle B C D=\angle C D A=\angle D A B=\frac{1}{4} 360^{\circ}=90^{\circ}$. Thus the rhombus $A B C D$ is also a rectangle, but a rectangle whose sides are all equal is a square.

Quiz \#4. Friday, 8 February, 2008. [10 minutes]

1. Suppose $\triangle A B C$ and $\triangle P Q R$ have $\angle A=\angle P=90^{\circ}$ and $\frac{|A B|}{|P Q|}=\frac{|B C|}{|Q R|}$. Show that $\angle B=\angle Q$. [5]
Solution. Let $\alpha=\frac{|A B|}{|P Q|}=\frac{|B C|}{|Q R|}$, so $|A B|=\alpha|P Q|$ and $|B C|=\alpha|Q R|$. Since $\angle A=$ $\angle P=90^{\circ}$, the two triangles are right triangles. By the Pythagorean Theorem, it follows that $|B C|^{2}=|A B|^{2}+|A C|^{2}$ and $|Q R|^{2}=|P Q|^{2}+|P R|^{2}$, so $|A C|^{2}=|B C|^{2}-|A B|^{2}=$ $\alpha^{2}|Q R|^{2}-\alpha^{2}|P Q|^{2}=\alpha^{2}|P R|^{2}$. Hence $|A C|=\alpha|P R|$, so $\frac{|A C|}{|P R|}=\alpha=\frac{|A B|}{|P Q|}=\frac{|B C|}{|Q R|}$. By the side-side-side criterion for similarity, it follows that $\triangle A B C \sim \triangle P Q R$, and hence $\angle B=\angle Q$.
Quiz \#5. Friday, 15 February, 2008. [10 minutes]
2. The medians $A X, B Y$, and $C Z$ meet in the centroid $O$ of $\triangle A B C$. Show that $O$ is also the centroid of $\triangle X Y Z$. [5]


Solution. Let $P=A X \cap Y Z, Q=B Y \cap X Z$, and $R=C Z \cap X Y$, as in the diagram above. We will first show that these three points are the midpoints of the sides of $\triangle X Y Z$.

Since $Y$ and $Z$ are the midpoints of $A C$ and $A B$, respectively, $Y Z \| B C$ and $|Y Z|=$ $\frac{1}{2}|B C| . \angle P A Y=\angle X A B$ since these are the same angle, and it follows from $Y Z \| B C$
that $\angle A B X=\angle A Y P$. Thus $\triangle A P Y \sim \triangle A X B$ by the angle-angle similarity criterion, and since $|A Y|=\frac{1}{2}|A B|$ ( $Y$ being the midpoint of $A C$ ) and $|X B| \frac{1}{2}|A B|$ ( $X$ being the midpoint of $B C$, it follows that $|P Y|=\frac{1}{2}|X B|=\frac{1}{2} \cdot \frac{1}{2}|A B|=\frac{1}{2}|Z Y|$. Thus $P$ is the midpoint of $Z Y$. Similar arguments show that $Q$ is the midpoint of $X Z$ and that $R$ is the midpoint of $X Y$.

It follows from the above that $X P, Y Q$, and $Z R$ are the medians of $\triangle X Y Z$, and so their common point of intersection, the centroid $O$ of $\triangle A B C$, is also the centroid of $\triangle X Y Z$.

Quiz \#6. Friday, 7 March, 2008. [10 minutes]

1. Suppose $X, Y$, and $Z$ are the midpoints of sides $B C, A C$, and $A B$, respectively, of $\triangle A B C$. Show that the circumcentre of $\triangle A B C$ is also the orthocentre of $\triangle X Y Z$. [5]


Solution. The altitude of $\triangle X Y Z$ from $X$ is, by definition, perpendicular to $Y Z$. Since $Y$ and $Z$ are the midpoints of $A C$ and $A B$, respectively, $Y Z \| B C$. Hence the altitude of $\triangle X Y Z$ from $X$ is perpendicular to $B C$ and passes through the midpoint of $B C$, so it is also the perpendicular bisector of $B C$.

Similarly, the altitudes from $Y$ and $Z$ of $\triangle A B C$ are also the pependicular bisectors of $A C$ and $A B$ respectively. Considered as altitudes of $\triangle X Y Z$, the three lines are concurrent in the orthocentre of $\triangle X Y Z$, and considered as perpendicular bisectors of the sides of $\triangle A B C$, the same three lines are concurrent in the circumcentre of $\triangle A B C$. Since three lines can be concurrent in at most one point, the orthocentre of $\triangle X Y Z$ must also be the circumcentre of $\triangle A B C$.

Quiz \#7. Friday, 14 March, 2008. [10 minutes]

1. Suppose $\triangle A B C$ has $\angle C=90^{\circ}$ and sides $a=3, b=4$, and $c=5$. Find the inradius $r$ of $\triangle A B C$. [5]
Hint: Depending on how you proceed, you may find the trigonometric identity $\tan \left(\frac{\theta}{2}\right)=\frac{\sin (\theta)}{1+\cos (\theta)}$ to be useful.
Solution. Recall that for any triangle, $K_{A B C}=r s$, where $r$ is the inradius and $s=\frac{a+b+c}{2}$ is the semiperimeter of $\triangle A B C$. In this case, $K_{A B C}=\frac{1}{2}$ base $\times$ height $=\frac{1}{2} 4 \cdot 3=6$ and $s=\frac{3+4+5}{2}=f r a c 122=6$, so $r=K_{A B C} / s=6 / 6=1$.

Quiz \#8. Thursday, 20 March, 2008. [10 minutes]

1. Suppose $A B C D E$ is a regular pentagon, $S$ is the intersection of $A D$ and $B E$, and $T$ is the intersection of $A C$ and $B D$. Compute $\mathbf{c r}(E, S, T, B)$. [5]


Hint: The following values of $\sin (\theta)$ may be of use: $\begin{array}{cccccc}\theta & 0^{\circ} & 36^{\circ} & 72^{\circ} & 108^{\circ} \\ \sin (\theta) & 0 & 0.59 & 0.95 & 0.95\end{array}$
Solution. Since $A B C D E$ is a regular pentagon, its five vertices are cocircular and divide up the circle in question into five equal arcs. Note that the collinear points $E, S, T$, and $B$ are in perspective from $A$ with the points $E, D, C$, and $B$, which are cocircular with $A$. Hence,

$$
\begin{aligned}
\operatorname{cr}(E, S, T, B) & =\mathbf{c r}(E, D, C, B) \\
& =\frac{\sin \left(\frac{1}{2} \operatorname{arc}(E C)\right) \sin \left(\frac{1}{2} \operatorname{arc}(D B)\right)}{\sin \left(\frac{1}{2} \operatorname{arc}(E B)\right) \sin \left(\frac{1}{2} \operatorname{arc}(D C)\right)} \\
& =\frac{\sin \left(\frac{1}{2} \cdot \frac{2}{5} \cdot 360^{\circ}\right) \sin \left(\frac{1}{2} \cdot \frac{2}{5} \cdot 360^{\circ}\right)}{\sin \left(\frac{1}{2} \cdot \frac{3}{5} \cdot 360^{\circ}\right) \sin \left(\frac{1}{2} \cdot \frac{1}{5} \cdot 360^{\circ}\right)} \\
& =\frac{\sin \left(72^{\circ}\right) \sin \left(72^{\circ}\right)}{\sin \left(108^{\circ}\right) \sin \left(36^{\circ}\right)} \\
& =\frac{0.95 \cdot 0.95}{0.95 \cdot 0.59}=\frac{0.95}{0.59}=1.61 .
\end{aligned}
$$

(Approximately, of course!)

Quiz \#9. Friday, 28 March, 2008. [10 minutes]

1. Suppose $\triangle A B C$ is a right triangle with $\angle B=90^{\circ}, a=4, b=5$, and $c=3$. $Z$ isa point on side $A B$ such that $|A Z|=2$, and $X$ is a point on side $B C$ such that $|B X|=1$. Find the point $Y$ on side $A C$ such that $A X, B Y$, and $C Z$ are concurrent. [5]


Solution. By Ceva's Theorem, $A X, B Y$, and $C Z$ will be concurrent exactly when $\frac{|A Z| \cdot|B X| \cdot|C Y|}{|Z B| \cdot|X C| \cdot|Y A|}=1$. In this case we know that $|A Z|=2,|Z B|=3-2=1,|B X|=1$, and $|X C|=4-1=3$, so $A X, B Y$, and $C Z$ will be concurrent exactly when $\frac{2 \cdot 1 \cdot|C Y|}{1 \cdot 3 \cdot|Y A|}=1$, i.e. when $\frac{|C Y|}{|Y A|}=\frac{3}{2}$. Since $|C Y|+|Y A|=b=5$, it follows that $A X, B Y$, and $C Z$ will be concurrent exactly when $|C Y|=3$ and $|Y A|=2$.

