Mathematics 226H - Geometry I: Euclidean geometry
 Trent University, Winter 2008

 Quizzes

 Quizzes}

Quiz \#1. Friday, 18 January, 2008. [10 minutes]

1. Given a line segment $A B$, show, using Euclid's system, that there is a point C so that B is on $A C$ and $|B C|=|A B|$. [5]

Quiz \#2. Friday, 25 January, 2008. [10 minutes]

1. Suppose that the median from A in $\triangle A B C$ is also an altitude. Show that $\triangle A B C$ is isosceles. [5]

Quiz \#3. Friday, 1 February, 2008. [10 minutes]

1. Show that a rhombus inscribed in a circle must be a square. [5]

Quiz \#3. Alternate version. [10 minutes]

1. A line is drawn through two concentric circles as shown.

Show that $\triangle O X A \cong \triangle O Y B$. [5]
Quiz \#4. Friday, 8 February, 2008. [10 minutes]

1. Suppose $\triangle A B C$ and $\triangle P Q R$ have $\angle A=\angle P=90^{\circ}$ and $\frac{|A B|}{|P Q|}=\frac{|B C|}{|Q R|}$. Show that $\angle B=\angle Q$. [5]

Quiz \#5. Friday, 15 February, 2008. [10 minutes]

1. The medians $A X, B Y$, and $C Z$ meet in the centroid O of $\triangle A B C$. Show that O is also the centroid of $\triangle X Y Z$. [5]

Quiz \#6. Friday, 7 March, 2008. [10 minutes]

1. Suppose X, Y, and Z are the midpoints of sides $B C, A C$, and $A B$, respectively, of $\triangle A B C$. Show that the circumcentre of $\triangle A B C$ is also the orthocentre of $\triangle X Y Z$. [5]

Quiz \#7. Friday, 14 March, 2008. [10 minutes]

1. Suppose $\triangle A B C$ has $\angle C=90^{\circ}$ and sides $a=3, b=4$, and $c=5$. Find the inradius r of $\triangle A B C$. [5]
Hint: Depending on how you proceed, you may find the trigonometric identity $\tan \left(\frac{\theta}{2}\right)=\frac{\sin (\theta)}{1+\cos (\theta)}$ to be useful.

Quiz \#8. Thursday, 20 March, 2008. [10 minutes]

1. Suppose $A B C D E$ is a regular pentagon, S is the intersection of $A D$ and $B E$, and T is the intersection of $A C$ and $B D$. Compute $\mathbf{c r}(E, S, T, B)$. [5]

Hint: The following values of $\sin (\theta)$ may be of use

θ	0°	36°	72°	108°
$\sin (\theta)$	0	0.59	0.95	0.95

Quiz \#9. Friday, 28 March, 2008. [10 minutes]

1. Suppose $\triangle A B C$ is a right triangle with $\angle B=90^{\circ}, a=4, b=5$, and $c=3$. Z isa point on side $A B$ such that $|A Z|=2$, and X is a point on side $B C$ such that $|B X|=1$. Find the point Y on side $A C$ such that $A X, B Y$, and $C Z$ are concurrent. [5]

