Mathematics 226H – Geometry I: Euclidean geometry

TRENT UNIVERSITY, Winter 2008

Quizzes

Quiz #1. Friday, 18 January, 2008. [10 minutes]

1. Given a line segment AB, show, using Euclid's system, that there is a point C so that B is on AC and |BC| = |AB|. [5]

Quiz #2. Friday, 25 January, 2008. [10 minutes]

1. Suppose that the median from A in $\triangle ABC$ is also an altitude. Show that $\triangle ABC$ is isosceles. [5]

Quiz #3. Friday, 1 February, 2008. [10 minutes]

1. Show that a rhombus inscribed in a circle must be a square. [5]

Quiz #3. Alternate version. [10 minutes]

1. A line is drawn through two concentric circles as shown.

Show that $\triangle OXA \cong \triangle OYB$. [5]

Quiz #4. Friday, 8 February, 2008. [10 minutes]

1. Suppose $\triangle ABC$ and $\triangle PQR$ have $\angle A = \angle P = 90^{\circ}$ and $\frac{|AB|}{|PQ|} = \frac{|BC|}{|QR|}$. Show that $\angle B = \angle Q$. [5]

Quiz #5. Friday, 15 February, 2008. [10 minutes]

1. The medians AX, BY, and CZ meet in the centroid O of $\triangle ABC$. Show that O is also the centroid of $\triangle XYZ$. [5]

Quiz #6. Friday, 7 March, 2008. [10 minutes]

1. Suppose X, Y, and Z are the midpoints of sides BC, AC, and AB, respectively, of $\triangle ABC$. Show that the circumcentre of $\triangle ABC$ is also the orthocentre of $\triangle XYZ$. [5]

Quiz #7. Friday, 14 March, 2008. [10 minutes]

- 1. Suppose $\triangle ABC$ has $\angle C = 90^{\circ}$ and sides a = 3, b = 4, and c = 5. Find the inradius r of $\triangle ABC$. [5]
 - *Hint:* Depending on how you proceed, you may find the trigonometric identity $\tan\left(\frac{\theta}{2}\right) = \frac{\sin(\theta)}{1+\cos(\theta)}$ to be useful.

Quiz #8. Thursday, 20 March, 2008. [10 minutes]

1. Suppose ABCDE is a regular pentagon, S is the intersection of AD and BE, and T is the intersection of AC and BD. Compute cr(E, S, T, B). [5]

Hint: The following values of $\sin(\theta)$ may be of use: $\frac{\theta}{\sin(\theta)} = \frac{0^{\circ}}{0} = \frac{36^{\circ}}{0.59} = \frac{72^{\circ}}{0.95} = \frac{108^{\circ}}{0.95}$

Quiz #9. Friday, 28 March, 2008. [10 minutes]

1. Suppose $\triangle ABC$ is a right triangle with $\angle B = 90^{\circ}$, a = 4, b = 5, and c = 3. Z is a point on side AB such that |AZ| = 2, and X is a point on side BC such that |BX| = 1. Find the point Y on side AC such that AX, BY, and CZ are concurrent. [5]

