Mathematics 226H - Geometry I: Euclidean geometry
 Trent University, Winter 2008

 Solution to Problem Set \#8

 Solution to Problem Set \#8}

1. Suppose the Euler (i.e. 9-point) circle and the incircle of $\triangle A B C$ are the same circle. What kind of triangle does $\triangle A B C$ have to be? Prove it. [10]

Solution. If the 9 -point circle and the incircle of $\triangle A B C$ are the same circle, then the triangle is equilateral. Consider the points at which the 9 -point circle/incircle touches the sides of the triangle, say X on $B C, Y$ on $A C$, and Z on $A B$. Then $A X, B Y$, and $C Y$ are simultaneously altitudes, medians, and angle-bisectors of $\triangle A B C$. By Exercise 1B. 2 in the text (which was also the question on Quiz $\# 2$), if the altitude from A is also the bisector of $\angle A$, then $|A B|=|A C|$. Applying 1B. 2 to vertex B instead of A, we also get that $|A B|=|B C|$. Hence $\triangle A B C$ is equilateral.

