Mathematics 226H - Geometry I: Euclidean geometry
 Trent University, Winter 2008

Solutions to Problem Set \#7

1. (Exercise 2E.3) Show that in a right triangle, the inradiius, circumradius, and semiperimeter are related by the formula $s=r+2 R$. [5]

Solution. Suppose $\triangle A B C$ is a right triangle such that $\angle B=90^{\circ}$. It follows that the circumcentre O of $\triangle A B C$ is the middle point of $A C$ (see the discussion on pages 50-51), and so $b=|A C|=2 R$.

Let I be the incentre of $\triangle A B C$. Let U on $B C, V$ on $A C$, and W on $A B$ be the points at which the incircle is tangent to the sides of $\triangle A B C$. Then $I U \perp B C$ and $I W \perp A B$, since $I U$ and $I W$ are radii of the incircle, and since $\angle B=90^{\circ}$, it follows that $W B U I$ is a square and $|B W|=|B U|=r$.

By Lemma 2.27, we also have $|B W|=|B U|=s-b$. Plugging in the relationships noted above gives us $r=|B W|=s-b=s-2 R$, from which it follows that $s=r+2 R$, as desired.
2. (Exercise 2E.5) Extend the bisectors of $\angle A, \angle B$, and $\angle C$ of $\triangle A B C$ to meet the circumcircle at points X, Y, and Z. Show that I is the orthocentre of $\triangle X Y Z$. [5]
Hint: Show that $X Y$ is the perpendicular bisector of $I C$.

Solution. Following the hint, let P be the point of intersection of $X Y$ and $I C$. By Lemma 2.32 we have that $|I Y|=|C Y|$ and $|I X|=|C X|$. Since we also have $|X Y|=|X Y|$, $\triangle I Y X \cong \triangle C Y X$ by the side-side-side congruence test, and hence $\angle I Y P=\angle I Y X=$
$\angle C Y X=\angle C Y P$. As we also have $|I Y|=|C Y|$ and $|Y P|=|Y P|, \triangle I Y P \cong \triangle C Y P$ by the side-angle-side congruence test. This tells us that $|I P|=|C P|$, so $X Y$ bisects $I C$. It also tells us that $\angle I P Y=\angle C P Y$, and since these angles add up to a straight angle, it follows that $\angle I P Y$ and $\angle C P Y$ are right angles. Thus $X Y$ is a perpendicular bisector of $I C$, and hence is perpendicular to the extension $Z C$ of $I P$ too.

Similar arguments show that $X A$ is perpendicular to $Y Z$ and that $B Y$ is perpendicular to $X Z$. It follows that $X A, B Y$, and $C Z$ are the altitudes of $\triangle X Y Z$, so their common point of intersection, the incentre I of $\triangle A B C$, is the orthocentre of $\triangle X Y Z$.

