Mathematics 226H - Geometry I: Euclidean geometry
 Trent University, Winter 2008

Solutions to Problem Set \#6

1. (Exercise 2C.3) Given $\triangle A B C$, draw line $W V$ through A parallel to $B C$, line $U W$ through B parallel to $A C$, and line $U V$ through C parallel to $A B$. Show that the orthocentre of $\triangle A B C$ is the circumcentre of $\triangle U V W$. [5]
Solution. Given $\triangle A B C$, draw $\triangle U V W$ as described in the problem. Let $A X, B Y$, and $C Z$ be the altitudes of $\triangle A B C$, and let H be its orthocentre.

Note that $A X$ is perpendicular to $V W$ because $V W$ is parallel to $B C, B Y$ is perpendicular to $U W$ because $U W$ is parallel to $A C$, and $C Z$ is parallel to $U V$ because $U V$ is parallel to $A B$. Since the circumcentre of $\triangle U V W$ is the point where the perpendicular bisectors of its sides meet, it follows that all we need to show that H is the circumcentre of $\triangle U V W$ is to check that A, B, and C are the midpoints of the sides of $\triangle U V W$.

Since $A B$ is a transversal between the parallel lines $U W$ and $A C$, we have that $\angle B A C=\angle A B W$. Similarly, since $A B$ is a transversal between the parallel lines $V W$ and $B C$, we also have that $\angle C B A=\angle B A W$. As $|A B|=|A B|$, it follows by the side-angle-side congruence criterion that $\triangle A B C \cong \triangle B A W$, and so $|A W|=|B C|$.

Since $A C$ is a transversal between the parallel lines $U V$ and $A B$, we have that $\angle B A C=\angle A C V$. Similarly, since $A C$ is a transversal between the parallel lines $V W$ and $B C$, we also have that $\angle A C B=\angle V A C$. As $|A C|=|A C|$, it follows by the side-angle-side congruence criterion that $\triangle A B C \cong \triangle C V A$, and so $|A V|=|B C|$.

Thus $|A W|=|B C|=|A V|$, so A is the midpoint of $V W$. Similar arguments show that B is the midpoint of $U W$ and C is the midpoint of $U V$. Hence the altitudes $A X$, $B Y$, and $C Z$ of $\triangle A B C$ are also the perpendicular bisectors of the sides of $\triangle U V W$, so their intersection, the orthocentre H of $\triangle A B C$, is also the circumcentre of $\triangle U V W$.
2. (Exercise 2C.4) Show that the nine-point circle of $\triangle A B C$ is the locus of all midpoints of segments $U H$, where H is the orthocentre of $\triangle A B C$ and U is an arbitrary point of the circumcircle. [5]
Hint: By Exercise 1H.10, we already know that this locus is a circle.
Solution. Following the hint, we first review what it refers to:
1H. 10 Given a circle centered on a point O and an arbitrary point P, consider the locus of all points Y that occur as midpoints of segments $P X$, where X lies on the given circle. Show that this locus is a circle with radius half that of the original circle. Locate the center of the locus.
It follows from this that the locus of all midpoints of segments $U H$, where H is the orthocentre of $\triangle A B C$ and U is an arbitrary point of the circumcircle, is indeed a circle. Since any three distinct points on a circle uniquely determine that circle (see Theorem 1.15), all we have to do to show that the locus is the nine-point circle of $\triangle A B C$ is to show that at least three distinct points of the locus are on the nine-point circle.

Note that A, B, and C are on the circumcircle of $\triangle A B C$. Then the midpoints of $A H$, $B H$, and $C H$ are on the locus in question, by the definition of that locus. These mispoints are also the three Euler points of $\triangle A B C$, by the definition of Euler points on pp. 62-63, and hence are on the nine-point circle by Theorem 2.12. Since they have three points in common, the two circles are the same circle.

