Mathematics 226H - Geometry I: Euclidean geometry
 Trent University, Winter 2008

Solutions to Problem Set \#5

1. (Exercise 2A.1) Show that quadrilateral $A B C D$ can be inscribed in a circle if and only if $\angle B$ and $\angle D$ are supplementary. [5]
Hint: To prove if, show that D lies on the unique circle through A, B, and C.
Solution. We will prove the two directions of the "if and only if" argument separately. (\Longrightarrow) Assume that quadrilateral $A B C D$ is cyclic, i.e. it can be inscribed in a circle.

By Corollary 1.17 in the text, opposite angles of an inscribed quadrlateral, such as $\angle B$ and $\angle D$ are here, are supplementary.
(\Longleftarrow) Assume that $\angle B$ and $\angle D$ of quadrilateral $A B C D$ are supplementary. We will show, using an argument by contradiction, that D must lie on the unique circle defined by A, B, and C.

Suppose then, by way of contradiction, that D does not lie on the unique circle defined by A, B, and C. Then there are two possibilities: either D lies outside the circle or D lies inside the circle.

If D lies outside the circle, let X and Y be the points in which $D A$ and $D C$ intersect the circle. (It is possible that X or Y, or both, may be equal to B or C, respectively.) Corollary 1.18 then tells us that $\angle D$ is equal in degrees to $\frac{1}{2}(\operatorname{arc}(A B C)-\operatorname{arc}(X Y))$. Theorem 1.16 tells us that $\angle B$ is equal in degrees to $\frac{1}{2} \operatorname{arc}(A X C)$. Since $\operatorname{arc}(A B C)+\operatorname{arc}(A X C)=360^{\circ}$, it follows that:

$$
\angle B+\angle D=\frac{1}{2} \operatorname{arc}(A X C)+\frac{1}{2}(\operatorname{arc}(A B C)-\operatorname{arc}(X Y))=\frac{1}{2} 360^{\circ}-\frac{1}{2} \operatorname{arc}(X Y)<180^{\circ}
$$

Similarly, if D lies inside the circle, let X and Y be the points in which $D A$ and $D C$ intersect the circle. (Can X or Y be equal to B or C, respectively?) Corollary 1.19 then tells us that $\angle D$ is equal in degrees to $\frac{1}{2}(\operatorname{arc}(A B C)+\operatorname{arc}(X Y))$. Theorem 1.16 tells us that $\angle B$ is equal in degrees to $\frac{1}{2} \operatorname{arc}(A X C)$. Since $\operatorname{arc}(A B C)+\operatorname{arc}(A X C)=360^{\circ}$, it follows that:

$$
\angle B+\angle D=\frac{1}{2} \operatorname{arc}(A X C)+\frac{1}{2}(\operatorname{arc}(A B C)+\operatorname{arc}(X Y))=\frac{1}{2} 360^{\circ}+\frac{1}{2} \operatorname{arc}(X Y)>180^{\circ}
$$

Either way, if D is not on the circle defined by A, B, and C, then $\angle B+\angle D \neq 180^{\circ}$, i.e. they are not supplementary, a contradiction to the fact that they are. Hence, D must be on the circle defined by A, B, and C.

This completes the proof.
2. (Exercise 2B.3) Show that there can be no point P in $\triangle A B C$ such that every line through P subdivides the triangle into two pieces of equal area. [5]
Hint: If there is a point that has this property, show that the medians would have to pass through P.
Solution. Following the hint, we first show that the medians of $\triangle A B C$ would have to pass through any point P such that every line through P subdivides the triangle into two pieces of equal area. Assume, for the sake of argument, that such a point P existed.

Suppose the median from A met $B C$ in point X; by the definition of median this means that $|B X|=|X C|$.

Then $\triangle A B X$ and $\triangle A X C$ have the same height and bases $-B X$ and $X C$, respectively - of equal length, so they must have the same area. This means that the median $A X$ subdivides $\triangle A B C$ into pieces of equal area, which means that $A X$ would have to pass through P. Similar arguments show that the other medians of $\triangle A B C$ would have to pass through P as well.

Since the medians of $\triangle A B C$ meet in a common point, namely the centroid of the triangle, P would have to be the centroid of $\triangle A B C$. To show that there is no such P it now suffices to find a line through the centroid that does not divide $\triangle A B C$ into pieces of equal area.

Suppose points U on side $A B$ and V on side $B C$ are chosen so that $U V$ passes through the centroid - let's call it $P!$ - of $\triangle A B C$ and $U V \| B C$.

Since $U V \| B C$ and $A B$ and $A C$ are transversals, we have that $\angle A U P=\angle A B X$ and $\angle A V P=\angle A C X$. We also have that $\angle U A P=\angle B A X$ (these are the same angle)

and $\angle V A P=\angle C A X$ (and so are these). It now follows that $\triangle A U P \sim \triangle A B X$ and $\triangle A V P \sim \triangle A C X$, in each case by the angle-angle similarity criterion. Since P is the centroid, $\frac{|A P|}{|A X|}=\frac{2}{3}$, and it then follows from the similarities noted above that:

$$
\frac{|A U|}{|A B|}=\frac{|U P|}{|B X|}=\frac{|A P|}{|A X|}=\frac{2}{3}=\frac{|P V|}{|X C|}=\frac{|A V|}{|A C|}
$$

Since $|U V|=|U P|+|P V|$ and $|B C|=|B X|+|X C|$, it also follows that:

$$
\frac{|U V|}{|B C|}=\frac{|A U|}{|A B|}=\frac{|A V|}{|A C|}=\frac{2}{3}
$$

Hence $\triangle A U V \sim \triangle A B C$ by the side-side-side similarity criterion, with a scale factor of $\frac{2}{3}$. It follows that the area of $\triangle A U V$ is $\left(\frac{2}{3}\right)^{2}=\frac{4}{9}$ of the area of $\triangle A B C$ (see the discussion on p. 48 of the text). Since $\frac{4}{9} \neq \frac{1}{2}, U V$ is a line through P which does not divide $\triangle A B C$ into pieces of equal areas, as desired.

