Mathematics 226 H - Geometry I: Euclidean geometry
 Trent University, Winter 2008

Solutions to Problem Set \#4

1. (Exercise 1H.5) Given two points X and Y on a circle, a point P is chosen on line $X Y$, outside of the circle, and tangent $P T$ is drawn, where T lies on the circle. Show that $|P X| \cdot|P Y|=|P T|^{2}$. [5]

Solution. We'll actually prove a more general fact:
Suppose X, Y, U, and V are points on a circle such that $X Y$ and $U V$ meet in a point P outside the circle. Then $|P X| \cdot|P Y|=|P U| \cdot|P V|$.

This is a restatement of half of Theorem 1.35 in the text. The given problem is the special case where the points U and V coincide and the chord $U V$ is instead a tangent line.

Since $X Y V U$ is a cyclic quadrilateral, $\angle U X Y+\angle U V Y=180^{\circ}$, and since the points U, V, and P are collinear, $\angle U V Y+\angle Y V P=180^{\circ}$. It follows that $\angle U X Y=\angle Y V P$.

Since we also have $\angle V Y P=\angle X P U$ (because they're the same angle), it now follows by angle-angle similarity that $\triangle U X P \sim \triangle Y V P$. This means that $\frac{|P X|}{|P V|}=\frac{|P U|}{|P Y|}$, from which it follows that $|P X| \cdot|P Y|=|P U| \cdot|P V|$, as desired.

Note: There are direct ways to prove the problem, but this was just too cute to resist. Note that the argument above is somewhat different from the proof of Theorem 1.35 given in the text. The paranoid and eagle-eyed may still wonder, of course, whether and exactly how the given problem follows from the more general fact proven above.
2. (Exercise 1H.8) Let X be a point on side $B C$ of $\triangle A B C$ and draw $A X$. Let U and V be points on side $A B$ and $A C$, respectively, chosen so that $U V \| B C$, and let Y be the point where $A X$ cuts $U V$. Show that $\frac{|U Y|}{|Y V|}=\frac{|B X|}{|X C|}$. [5]

Solution. $\angle U A Y=\angle B A X$ because these are the same angle, and $\angle A U Y=\angle A B X$ because $U V \| B C$ and $A B$ is a transversal. Thus $\triangle A U Y \sim \triangle A B X$ by angle-angle similarity, and so $\frac{|U Y|}{|B X|}=\frac{|A Y|}{|A X|}$.

Similarly, $\angle V A Y=\angle C A X$ because these are the same angle, and $\angle A V Y=\angle A C X$ because $U V \| B C$ and $A C$ is a transversal. Thus $\triangle A Y V \sim \triangle A X C$ by angle-angle similarity, and so $\frac{|A Y|}{|A X|}=\frac{|Y V|}{|X C|}$.

Putting the above together, we get

$$
\frac{|U Y|}{|B X|}=\frac{|A Y|}{|A X|}=\frac{|Y V|}{|X C|} \quad \Longrightarrow \quad|U Y| \cdot|X C|=|Y V| \cdot|B X| \quad \Longrightarrow \quad \frac{|U Y|}{|Y V|}=\frac{|B X|}{|X C|}
$$

as desired.

