Mathematics 226 H - Geometry I: Euclidean geometry
 Trent University, Winter 2008

Solutions to Problem Set \#3

1. (Exercise 1E.3) Since a triangle is determined by angle-side-angle, there should be a formula for $K_{A B C}$ expressed in terms of a and $\angle B$ and $\angle C$. Derive such a formula. [5]

Solution. We'll derive the desired formula in as brutally low-power a way as we can, using the basic area formula for a triangle, $\frac{1}{2}$ base \times height, some algebra using Cartesian coordinates, and a little trigonometry. Since we are given the base, $a=|B C|$, our main objective will be to express the height, h, of the triangle in terms of $a, \angle B$, and $\angle C$.

First, we put $\triangle A B C$ down on the Cartesian plane so that B is at the origin, C is at $(a, 0)$, and A is above the x-axis at the point (x, h). We'll denote the point where the altitude from A meets $B C$ by D, which has coordinates $(x, 0)$.

Note that h is the height of the triangle if $B C$ is used as the base, so the area of the triangle is $\frac{1}{2}|B C| h=\frac{1}{2} a h$.

Second, considering the right triangle $\triangle A B D$, we get $\tan (\angle B)=h / x$. Note that this is the slope of the line that $A B$ is part of. Similarly, considering the right triangle $\triangle A C D$, we get $\tan (\angle C)=h /(a-x)$. Note that the slope of the line that $A C$ is part of is the negative of this, namely $-\tan (\angle C)=-h /(a-x)$.

Third, the equation of the line passing through $B=(0,0)$ with slope $\tan (\angle B)$ is $y=$ $\tan (\angle B) x$, and the equation of the line passing through $C=(a, 0)$ with slope $-\tan (\angle C)$ is $y=-\tan (\angle C)(x-a)=-\tan (\angle C) x+\tan (\angle C) a$.

Fourth, we find the coordinates of $A=(x, h)$, the point where the two lines intersect, in terms of $a, \tan (\angle B)$, and $\tan (\angle C)$, by comparing the equations of the lines and solving for x and then h. Solve for x :

$$
\begin{array}{ll}
& \tan (\angle B) x=-\tan (\angle C) x+\tan (\angle C) a \\
\Longrightarrow \quad & (\tan (\angle B)+\tan (\angle C)) x=\tan (\angle C) a \\
\Longrightarrow & x=\frac{a \tan (\angle C)}{\tan (\angle B)+\tan (\angle C)}
\end{array}
$$

Now we can get h by plugging the value for x into the equation of one of the lines:

$$
h=\tan (\angle B) x=\frac{a \tan (\angle B) \tan (\angle C)}{\tan (\angle B)+\tan (\angle C)}
$$

Finally, we plug our value for h into the basic formula for the area of a triangle to get the formula we want:

$$
\begin{aligned}
K_{A B C} & =\frac{1}{2} \text { base } \times \text { height }=\frac{1}{2} a h \\
& =\frac{1}{2} a \cdot \frac{a \tan (\angle B) \tan (\angle C)}{\tan (\angle B)+\tan (\angle C)} \\
& =\frac{a^{2}}{2} \cdot \frac{\tan (\angle B) \tan (\angle C)}{\tan (\angle B)+\tan (\angle C)}
\end{aligned}
$$

2. (Exercise 1F.9) In Figure 1.33 [reproduced below], point O is the centre of the circumcircle of $\triangle A B C$, and the bisector of $\angle A$ is extended to meet the circle at P. Prove that the radius $O P$ is perpendicular to $B C$. [5]

Solution. Let Q be the point of intersection of $B C$ and $O P$. Now

$$
\begin{aligned}
\angle B O Q & =\angle B O P \quad \text { Because they're the same angle. } \\
& =2 \angle B A P \quad \text { By Theorem 1.16. } \\
& =\angle A \quad \text { Because } A P \text { is the angle bisector of } \angle A .
\end{aligned}
$$

and, similarly,

$$
\begin{aligned}
\angle C O Q & =\angle C O P \quad \text { Because they're the same angle. } \\
& =2 \angle C A P \quad \text { By Theorem } 1.16 . \\
& =\angle A \quad \text { Because } A P \text { is the angle bisector of } \angle A .
\end{aligned}
$$

It follows that $\angle B O Q=\angle C O Q$. Since we also have $|O B|=|O C|$ (as both are radii of the circumcircle) and $|O Q|=|O Q|$ (duh!), the SAS congruence criterion tells us that $\triangle O B Q \cong \triangle O C Q$. Hence $\angle O Q B=\angle O Q C$; since $\angle O Q B+\angle O Q C=180^{\circ}$, it follows that $\angle O Q B=\angle O Q C=\frac{1}{2} 180^{\circ}=90^{\circ}$. Thus $O P$ is perpendicular to $B C$.

