Mathematics 226H - Geometry I: Euclidean geometry
 Trent University, Winter 2008

Problem Set \#11
Due on Friday, 4 April, 2008.

1. (Exercise 4B.2) Show using similar triangles that if Cevians $A P, B Q$, and $C R$ are parallel, then the Cevian product is trivial. [5]

Hint: Let a, b, and c denote the lengths of the sides of $\triangle A B C$ and write $x=|B P|$ and $y=|P C|$. Express each of the six lengths that appear in the Cevian product in terms of the five quantities a, b, c, x, and y.
Solution. Following the hint, let a, b, and c denote the lengths of the sides of $\triangle A B C$ and write $x=|B P|$ and $y=|P C|$. The Cevian product we need to consider is $\frac{|A R|}{|R B|} \cdot \frac{|B P|}{|P C|} \cdot \frac{|C Q|}{|Q A|}$. To follow the hint, observe that we still need to write $|A R|,|R B|,|C Q|$, and $|Q A|$ in terms of a, b, c, x, and y. Draw a line through A parallel to $B C$ meeting $B R$ at U and $C Q$ at V :

Since $U A \| B P$ and $B U \| P A, U A B P$ is a parallelogram, and so $|U A|=|B P|=x$ and $|B U|=|P A|$. Similarly, because $A V \| P C$ and $P A \| C V, A V C P$ is a paralellogram, and so $|A V|=|P C|=y$ and $|C V|=|P A|$.

Since $Q U \| A P$ and $U A \| P C, \angle Q U A=\angle A P C$, and since $Q C$ is a transversal between the parallel lines $Q A$ and $P C$, we also have $\angle Q A U=\angle A C P$. Hence $\triangle Q U A \sim$ $\triangle A P C$, and so $\frac{|Q A|}{b}=\frac{|Q A|}{|A C|}=\frac{|U A|}{|P C|}=\frac{x}{y}$, which gives us that $|Q A|=b x / y$. A similar argument shows that $\triangle R A V \sim \triangle A B P$ and $|A R|=c y / x$. It follows from these that $|C Q|=|C A|+|A Q|=b+b x / y=(b y+b x) / y=b(y+x) / y=b a / y$ and $|B R|=$ $|B A|+|A R|=c+c y / x=(c x+c y) / x=c(x+y) / x=c a / x$.

We can now compute the Cevian product in terms of a, b, c, x, and y :

$$
\frac{|A R|}{|B R|} \cdot \frac{|B P|}{|P C|} \cdot \frac{|C Q|}{|Q A|}=\frac{c y / x}{c a / x} \cdot \frac{x}{y} \cdot \frac{b a / y}{b x / y}=\frac{y}{a} \cdot \frac{x}{y} \cdot \frac{a}{x}=\frac{y x a}{a y x}=1
$$

Thus the Cevian product is trivial if $A P, B Q$, and $C R$ are parallel, as desired.
2. (Exercise 4D.3) Three concurrent Cevians $A P, B Q$, and $C R$ are drawn in $\triangle A B C$, as shown in the figure, and $R Q$ is extended to meet the extension of $B C$ at S. Apply both Ceva's and Menelaus' theorem in $\triangle A B C$ to prove that $x z=y(x+y+z)$, where we have written $|B P|=x,|P C|=y$, and $|C S|=z$, as indicated. [5]

Solution. Since the Cevians $A P, B Q$, and $C R$ are concurrent, Ceva's Theorem tells us that

$$
\frac{|A R|}{|B R|} \cdot \frac{|B P|}{|P C|} \cdot \frac{|C Q|}{|Q A|}=\frac{|A R|}{|B R|} \cdot \frac{x}{y} \cdot \frac{|C Q|}{|Q A|}=1
$$

Also, since R, Q, and S are collinear, and $|B S|=|B P|+|P C|+|C S|=x+y+z$, Menelaus' Theorem tells us that

$$
\frac{|A R|}{|B R|} \cdot \frac{|B S|}{|S C|} \cdot \frac{|C Q|}{|Q A|}=\frac{|A R|}{|B R|} \cdot \frac{x+y+z}{z} \cdot \frac{|C Q|}{|Q A|}=1
$$

Rearranging and comparing these equations gives us that

$$
\frac{x}{y}=\frac{|B R|}{|A R|} \cdot \frac{|Q A|}{|C Q|}=\frac{x+y+z}{z}
$$

and cross-multiplying this gives $x z=y(x+y+z)$, as desired.

