Mathematics 226H - Geometry I: Euclidean geometry
 Trent University, Winter 2008
 Solutions to Problem Set \#10

1. (Exercise 4A.2) Let U and V be points on sides $A B$ and $A C$, respectively, of $\triangle A B C$ and suppose that $U V$ is parallel to $B C$. Show that the intersection of $U C$ and $V B$ lies on the median $A M$. [5]

Solution. Since $U V \| B C, \angle A U V=\angle A B C$ and $\angle A V U=\angle A C B$. It follows that $\triangle A U V \sim \triangle A B C$, and so $\frac{|A U|}{|A B|}=\frac{|A V|}{|A C|}$. Since $|A B|=|A U|+|U B|$ and $|A C|=|A V|+|V C|$, we also get that

$$
\frac{|U B|}{|A U|}+1=\frac{|U B|+|A U|}{|A U|}=\frac{|A B|}{|A U|}=\frac{|A C|}{|A V|}=\frac{|V C|+|A V|}{|A V|}=\frac{|V C|}{|A V|}+1 .
$$

Thus $\frac{|U B|}{|A U|}=\frac{|V C|}{|A V|}$, and hence $\frac{|A U|}{|U B|}=\frac{|A V|}{|V C|}$.
Note also that if $\mathrm{f} A M$ is a median of $\triangle A B C$, then, by definition, $|B M|=|M C|$, so $\frac{|B M|}{|M C|}=1$.

Computing the Cevian product for the Cevians $A M, B V$, and $C U$ we get, using the relations obtained above:

$$
\frac{|A U|}{|U B|} \cdot \frac{|B M|}{|M C|} \cdot \frac{|C V|}{|V A|}=\frac{|A V|}{|V C|} \cdot 1 \cdot \frac{|C V|}{|V A|}=1
$$

By Ceva's Theorem, it follows that $A M, B V$, and $C U$ are concurrent, as desired.
2. (Exercise 4A.5) Given three concurrent Cevians in a triangle, show that the three lines obtained by joining the midpoints of the Cevians to the midpoints of the corresponding sides are concurrent. [5]
Hint: Consider the medial triangle.
Solution. Suppose $A P, B Q$, and $C R$ are concurrent Cevians of $\triangle A B C$, respectively, and let X, Y, and Z be the midpoints of sides $B C, A C$, and $A B$, respectively. $\triangle X Y Z$ is the medial triangle of $\triangle A B C$, and it follows from Lemma 1.29 (among other results) that $X Y\|A B, Y Z\| B C$, and $X Z \| A C$. In turn, this implies that $\triangle A B C \sim \triangle X Y Z$.

Let U be the intersection of $A P$ with $Y Z, V$ be the intersection of $B Q$ with $X Z$, and W be the intersection of $C R$ with $X Y$.

We claim that U is the midpoint of $A B$. Since $A B$ and $A P$ are transversals meeting the parallel lines $Y Z$ and $B C, \angle A Z U=\angle A B P$ and $\angle A U Z=A P B$. Hence $\triangle A Z U \sim \triangle A B P$ by the angle-angle similarity criterion. It follows that $\frac{|A U|}{|A P|}=\frac{|A Z|}{|A B|}=\frac{1}{2}$ (recall that Z is the midpoint of $A B$), and hence U is the midpoint of $A B$. Similar arguments show that V and W are the midpoints of $B Q$ and $C R$, respectively.

Note that it is a consequence of the argument in the previous paragraph that $|U Z|=$ $\frac{1}{2}|B P|$. Similar arguments can also be used to show that $|Y U|=\frac{1}{2}|P C|,|X W|=\frac{1}{2}|B R|$, $|W Y|=\frac{1}{2}|R A|,|V X|=\frac{1}{2}|C Q|$, and $|Z V|=\frac{1}{2}|Q A|$. Observe that $X U, Y V$, and $Z W$ are Cevians of $\triangle X Y Z$. By Ceva's Theorem they will be concurrent if and only if the corresponding Cevian product equals 1 :

$$
\begin{aligned}
\frac{|X W|}{|W Y|} \cdot \frac{|Y U|}{|U Z|} \cdot \frac{|Z V|}{|V X|} & =\frac{\frac{1}{2}|B R|}{\frac{1}{2}|R A|} \cdot \frac{\frac{1}{2}|P C|}{\frac{1}{2}|B P|} \cdot \frac{\frac{1}{2}|Q A|}{\frac{1}{2}|C Q|}=\frac{|B R|}{|R A|} \cdot \frac{|P C|}{|B P|} \cdot \frac{|Q A|}{|C Q|} \\
& =\frac{|B R|}{|R A|} \cdot \frac{|A Q|}{|Q C|} \cdot \frac{|C P|}{|P B|}=1
\end{aligned}
$$

(Since the given Cevians of $\triangle A B C$ are concurrent.)
Thus $X U, Y V$, and $Z W$ are concurrent, as desired.

