Mathematics 2260H - Geometry I: Euclidean geometry

Trent University, Fall 2018
Solutions to Assignment \#8
Internal and External Angles
Suppose the chords $A B$ and $C D$ of a circle with centre O intersect at a point P that is not on the circle.

1. Show that $\angle A P C=\frac{1}{2}(\angle A O C+\angle B O D)$ if P is inside the circle. [5] [5]

Solution. Suppose the chords $A B$ and $C D$ of a circle with centre O intersect at a point P that is inside the circle. Connect B to C and consider $\triangle B P C$. Then $\angle B P C+\angle B C P+$ $\angle P B C=\pi \mathrm{rad}$ since the sum of the interior angles of a triangle is a straight angle, so $\angle B P C=\pi-\angle P B C-\angle B C P=\pi-\angle A B C-\angle B C D=\pi-\frac{1}{2} \angle A O C-\frac{1}{2} \angle B O D$ by Proposition III-20. As $\angle A P C+\angle B P C=\pi$ because A, P, and B are collinear, it now follows that

$$
\angle A P C=\pi-\angle B P C=\pi-\left(\pi-\frac{1}{2} \angle A O C-\frac{1}{2} \angle B O D\right)=\frac{1}{2} \angle A O C+\frac{1}{2} \angle B O
$$

as desired.
2. Show that $\angle A P C=\frac{1}{2}(\angle A O C-\angle B O D)$ if P is outside the circle. [5]

Solution. Suppose the chords $A B$ and $C D$ of a circle with centre O intersect at a point P that is outside the circle. Connect B to C and consider $\triangle B P C$. Then $\angle B P C+\angle B C P=$ $\angle A B C$ since an exterior angle of a triangle is the sum of the opposite interior angles. It follows that

$$
\angle A P C=\angle B P C=\angle A B C-\angle B C P=\angle A B C-\angle B C D=\frac{1}{2} \angle A O C-\frac{1}{2} \angle B O D,
$$

as desired, with a little help from Proposition III-20 again.

