Mathematics 2260H - Geometry I: Euclidean geometry

Trent University, Fall 2018

Solutions to Assignment \#2 Congruence and Similarity

DEFINITION. $\triangle A B C$ and $\triangle D E F$ are congruent, written as $\triangle A B C \cong \triangle D E F$, if all the corresponding sides and angles are equal. That is, $\triangle A B C \cong \triangle D E F$ exactly when $|A B|=|D E|,|A C|=|D F|,|B C|=|E F|, \angle A B C=\angle D E F, \angle B C A=\angle E F D$, and $\angle C A B=\angle F D E$. [We mentioned this in class just before doing Proposition I-4.]

Informally, this means that you can place $\triangle A B C$ over $\triangle D E F$ (possibly needing to flip it over) so that A is exactly on D, B is exactly on E, and C is exactly on F; i.e. so that $\triangle A B C$ exactly covers $\triangle D E F$. We can make this idea a little more precise:

Definition. The rigid motions in the plane include the translations, which slide all points in the plane a fixed distance in the same direction, the rotations, which revolve all points in the plane by some fixed angle around some fixed point, and the reflections, which swap all points with their mirror images across some fixed line, along with all compositions of finitely many of these three types of transformations.

1. Suppose $\triangle A B C \cong \triangle D E F$. Explain, informally, but as completely as you can, why one can move $\triangle A B C$ so that it exactly covers $\triangle D E F$ by no more than one translation, followed by no more than one rotation, followed by no more than one reflection. [2]

Solution. Suppose $\triangle A B C \cong \triangle D E F$. If necessary, slide $\triangle A B C$ so that A is on D, and then, if necessary, rotate $\triangle A B C$ about the point $A=D$ until $A B$ is on $D E$. There are now two cases:

1. C is on the same side of $A B=D E$ as F.
2. C is on the opposite side of $A B=D E$ from F.

In case $1, C$ must be on F, so no reflection is required; in case 2 , reflecting $\triangle A B C$ in the line $A B=D E$ leaves $A B$ on $D E$ and puts C on F. Either way, we have A on D, B on E, and C on F, so $\triangle A B C$ exactly covers $\triangle D E F$.

Why does this work? Informally, it's not too hard to convince yourself by cutting two congruent (preferably not isosceles) triangles out of paper and trying out the procedure above. Somewhat more formally, it's easy to see that one can always execute the first two steps, the slide (i.e. translation) and rotation, and that one or the other of the two cases must occur after the first two steps. One has to put in a little work to check that in case 1 we already have C on F, and in case 2 that reflecting $\triangle A B C$ in the line $A B=D E$ puts C on F.

Note that the key to the whole process, and verifying that it works, is that the definition of congruence is sensitive to the order that vertices are listed in a triangle. For example, $\triangle A B C \not \approx \triangle B A C$ unless $|A C|=|B C|$.

Similarly - cough, cough - to the definition of congruence we have the following:
Definition. $\triangle A B C$ and $\triangle D E F$ are similar, written as $\triangle A B C \sim \triangle D E F$, if all the corresponding angles are the same. That is, $\triangle A B C \sim \triangle D E F$ exactly when $\angle A B C=$ $\angle D E F, \angle B C A=\angle E F D$, and $\angle C A B=\angle F D E$.

That is, similar triangles have the same shape, but not necessarily the same size. Note that congruence implies similarity for triangles in the Euclidean plane, but not the other way around. We will mainly be concerned with these ideas for triangles, but the definitions can obviously be extended to other two-dimensional shapes.
2. Show that if $\triangle A B C \sim \triangle D E F$ and $\triangle D E F \sim \triangle G H I$, then $\triangle A B C \sim \triangle G H I$. [1]

Solution. Since $\triangle A B C \sim \triangle D E F$ and $\triangle D E F \sim \triangle G H I$, we have, by the definition of similarity in each case, that corresponding angles are equal. This means that $\angle A B C=$ $\angle D E F=\angle G H I, \angle B C A=\angle E F D=\angle H I G$, and $\angle C A B=\angle F D E=\angle I G H$, so, by the definition of similarity again, $\triangle A B C \sim \triangle G H I$.

Since we haven't yet developed all the Euclidean tools needed, you may, if you wish, use trigonometry and the fact that the interior angles of a triangle sum to two right angles (or one straight angle, or $\pi \mathrm{rad}$, or 180°, or ... :-) to help do the following problems.
3. Prove the Side-Angle-Side (SAS) similarity criterion for triangles: if $\angle A B C=\angle D E F$ and $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}$, then $\triangle A B C \sim \triangle D E F$. [2]

Solution. We will make use of the Law of Sines in each triangle:

$$
\begin{aligned}
& \frac{\sin (\angle A B C)}{|A C|}=\frac{\sin (\angle B C A)}{|A B|}=\frac{\sin (\angle C A B)}{|B C|} \text { and } \\
& \frac{\sin (\angle D E F)}{|D F|}=\frac{\sin (\angle E F D)}{|D E|}=\frac{\sin (\angle F D E)}{|E F|}
\end{aligned}
$$

Note that $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}$ implies that $\frac{|B C|}{|A B|}=\frac{|D F|}{|D E|}$. From this, $\angle A B C=\angle D E F$, and the Law of Sines formulas above it now follows that:

$$
\sin (\angle C A B)=\sin (\angle A B C) \cdot \frac{|B C|}{|A B|}=\sin (\angle D E F) \cdot \frac{|D F|}{|D E|}=\sin (\angle F E D)
$$

This, in turn, implies that $\angle C A B=\angle F E D$. Since the interior angles of a triangle add up to a straight angle, and $\triangle A B C$ and $\triangle D E F$ have two equal angles, the third angles must also be equal:

$$
\angle B C A=\pi-\angle A B C-\angle C A B=\pi-\angle D E F-\angle F D E=\angle E F D
$$

Since the corresponding angles of the two triangles are equal, $\triangle A B C \sim \triangle D E F$.
Note. There is a small hole in the argument above. Find it and fix it!
4. Suppose P and Q are the midpoints of sides $A B$ and $A C$ in $\triangle A B C$. Show that $\triangle A B C \sim \triangle A P Q$ and $|B C|=2|P Q| .[1]$

Solution. $\angle B A C=\angle P A Q$, since it is the same angle. $|A B|=2|A P|$ and $|A C|=2|A Q|$ because P and Q are the midpoints of $A B$ and $A C$, respectively, so $\frac{|A B|}{|A P|}=2=\frac{|A C|}{|A Q|}$. It now follows by the SAS similarity criterion that $\triangle A B C \sim \triangle A P Q$.

It remains to show that $|B C|=2|P Q|$, which will do using the Law of Cosines:

$$
\begin{aligned}
|B C|^{2} & =|A B|^{2}+|A C|^{2}-2 \cdot|A B| \cdot|A C| \cdot \cos (\angle B A C) \\
& =(2|A P|)^{2}+(|A Q|)^{2}-2 \cdot 2|A P| \cdot 2|A Q| \cdot \cos (\angle P A Q) \\
& =4|A P|^{2}+4|A Q|^{2}-4 \cdot 2 \cdot|A P| \cdot|A Q| \cdot \cos (\angle P A Q) \\
& =4\left[|A P|^{2}+|A Q|^{2}-2 \cdot|A P| \cdot|A Q| \cdot \cos (\angle P A Q)\right] \\
& =4|P Q|^{2}=(2|P Q|)^{2}
\end{aligned}
$$

As line segments have non-negative lengths, it follows that $|B C|=2|P Q|$, as desired.
5. Prove the Side-Side-Side (SSS) similarity criterion for triangles: if $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=$ $\frac{|A C|}{|D F|}$, then $\triangle A B C \sim \triangle D E F .[2]$
Solution. Note that if $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}=1$, then $|A B|=|D E|,|B C|=|E F|$, and $|A C|=|D F|$. It now follows by the SSS congruence criterion (Proposition I-8 in Euclid's Elements), that $\triangle A B C \cong \triangle D E F$ and hence that $\triangle A B C \sim \triangle D E F$.

Otherwise, suppose $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}<1$. (If $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}>1$ instead, the same argument will work, with the roles of the triangles reversed.) We then have $|A B|<|D E|$ and $|B C|<|E F|$. Let G be the point between D and E such that $|G E|=|A B|$ and let H be the point between E and F such that $|E H|=|B C|$. Since $\angle G E H=\angle D E F$ and $\frac{|G E|}{|D E|}=\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|E H|}{|E F|}$, it follows by the SAS criterion for similarity (3) that $\triangle G E H \sim \triangle D E F$.

From $\frac{|A B|}{|D E|}=\frac{|B C|}{|E F|}=\frac{|A C|}{|D F|}$ we get that $|A B|=|D E| \cdot \frac{|A C|}{|D F|}$ and $|B C|=|E F| \cdot \frac{|E F|}{|D F|}$. We now use the the Law of Cosines:

$$
\begin{aligned}
|G H|^{2} & =|G E|^{2}+|E H|^{2}-2 \cdot|G E| \cdot|E H| \cdot \cos (\angle G E H) \\
& =|A B|^{2}+|B C|^{2}-2 \cdot|A B| \cdot|B C| \cdot \cos (\angle D E F) \\
& =|D E|^{2} \cdot \frac{|A C|^{2}}{|D F|^{2}}+|E F|^{2} \cdot \frac{|E F|^{2}}{|D F|^{2}}-2 \cdot|D E| \cdot \frac{|A C|}{|D F|} \cdot|E F| \cdot \frac{|E F|}{|D F|} \cdot \cos (\angle D E F) \\
& =\frac{|A C|^{2}}{|D F|^{2}} \cdot\left[|D E|^{2}+|E F|^{2}-2 \cdot|D E| \cdot|E F| \cdot \cos (\angle D E F)\right] \\
& =\frac{|A C|^{2}}{|D F|^{2}} \cdot|D F|^{2}=|A C|^{2}
\end{aligned}
$$

Thus $|G H|=|A C|$ in addition to $|G E|=|A B|$ and $|E H|=|B C|$, so it follows by the SSS congruence criterion that $\triangle G E H \cong \triangle A B C$, and so $\triangle G E H \sim \triangle A B C$.

Since $\triangle G E H$ is similar to both $\triangle A B C$ and $\triangle D E F$, we have $\triangle A B C \sim \triangle D E F$, as desired.
6. Suppose P, Q, and R are the midpoints of sides $A B, A C$, and $B C$, respectively in $\triangle A B C$. Show that $\triangle R Q P \sim \triangle A B C$ and $\frac{|A B \||}{|R Q|}=\frac{|A C|}{|R P|}=\frac{|B C|}{|Q P|}=2$. [2]
Solution. Applying the length result of 4 repeatedly, we get that $|B C|=2|Q P|,|A B|=$ $2|R Q|$, and $|A C|=2|R P|$, so $\frac{|A B| \mid}{|R Q|}=\frac{|A C|}{|R P|}=\frac{|B C|}{|Q P|}=2$. It now follows by the SSS similarity criterion that $\triangle R Q P \sim \triangle A B C$.

