Mathematics 2260H – Geometry I: Euclidean geometry TRENT UNIVERSITY, Fall 2016 Solutions to Assignment #3

Problems worthy of attack / Prove their worth by hitting back.*

Suppose $\triangle ABC$ has $\angle ABC = \angle ACB = 80^{\circ}$ and $\angle BAC = 20^{\circ}$. Let D be the point on AC between A and C such that AD = BC.

1. Determine $\angle ADB$ anyway you like. [3]

Solution. See the solution to $\mathbf{2}$ below. \Box

2. Determine $\angle ADB$ without using trigonometry. (You may use Postulate V or an equivalent, if you wish.) [7]

SOLUTION. Construct an equilateral triangle $\triangle ADE$ such that E is on the opposite side of AC from B. Connect B to E, and let F be the point where AC intersects BE.

The sum of the interior angles of a triangle is a straight angle, *i.e.* 180°, so each of the interior angles of an equilateral triangle measures 60°. It follows that $\angle EAB = \angle EAD + \angle DAB = 60^{\circ} + 20^{\circ} = 80^{\circ}$. Since we also have EA = AD = BC and AB = BA, $\triangle BAE \cong \triangle ABC$ by the Side-Angle-Side congruence criterion. It follows from this congruence that BE = AC; since DB = DB, and we have AD = ED by construction, it follows that $\triangle ADB \cong \triangle EDB$ by the Side-Side-Side congruence criterion.

Since $\triangle BAE \cong \triangle ABC$, $\angle ABD + \angle EBD = \angle ABE = \angle BAC = 20^{\circ}$, and since $\triangle ADB \cong \triangle EDB$, $\angle ABD = \angle EBD$, so $\angle ABD = \angle EBD = 10^{\circ}$. It follows that $\angle ADB = 180^{\circ} - \angle BAD - \angle EBD = 180^{\circ} - 20^{\circ} - 10^{\circ} = 150^{\circ}$.

^{*} A grook by Piet Hein.