Mathematics 2260H - Geometry I: Euclidean geometry

Trent University, Fall 2016
Solutions to Assignment \#3

Problems worthy of attack / Prove their worth by hitting back.*

Suppose $\triangle A B C$ has $\angle A B C=\angle A C B=80^{\circ}$ and $\angle B A C=20^{\circ}$. Let D be the point on $A C$ between A and C such that $A D=B C$.

1. Determine $\angle A D B$ anyway you like. [3]

Solution. See the solution to 2 below.
2. Determine $\angle A D B$ without using trigonometry. (You may use Postulate V or an equivalent, if you wish.) [7]

Solution. Construct an equilateral triangle $\triangle A D E$ such that E is on the opposite side of $A C$ from B. Connect B to E, and let F be the point where $A C$ intersects $B E$.

The sum of the interior angles of a triangle is a straight angle, i.e. 180°, so each of the interior angles of an equilateral triangle measures 60°. It follows that $\angle E A B=$ $\angle E A D+\angle D A B=60^{\circ}+20^{\circ}=80^{\circ}$. Since we also have $E A=A D=B C$ and $A B=$ $B A, \triangle B A E \cong \triangle A B C$ by the Side-Angle-Side congruence criterion. It follows from this congruence that $B E=A C$; since $D B=D B$, and we have $A D=E D$ by construction, it follows that $\triangle A D B \cong \triangle E D B$ by the Side-Side-Side congruence criterion.

Since $\triangle B A E \cong \triangle A B C, \angle A B D+\angle E B D=\angle A B E=\angle B A C=20^{\circ}$, and since $\triangle A D B \cong \triangle E D B, \angle A B D=\angle E B D$, so $\angle A B D=\angle E B D=10^{\circ}$. It follows that $\angle A D B=180^{\circ}-\angle B A D-\angle E B D=180^{\circ}-20^{\circ}-10^{\circ}=150^{\circ}$.

[^0]
[^0]: * A grook by Piet Hein.

