Mathematics $2260 H$ - Geometry I: Euclidean geometry Trent University, Fall 2015

 Assignment \#4

 Assignment \#4

 Centres and circles for triangles

 Centres and circles for triangles
 Due on Monday, 9 November, 2015.

Before tackling these problems, it might be a good idea to review the results in the textbook about when a point is equidistant from two given points or two given lines. These results are implicit in some of Euclid's Propositions from Book I, especially I-10 through I-12, but are explicitly stated in the textbook.

1. Show that the three perpendicular bisectors of the sides of a triangle are concurrent [i.e. meet at a single point], and that this point is the centre of a circle that passes through all three vertices of the triangle. [5]

Note: The point in which the perpendicular bisectors meet is called the circumcentre of the triangle and the circle is called the circumcircle of the triangle.
2. Show that three internal angle bisectors of a triangle are concurrent and that this point is the centre of a circle that touches each of the sides of the triangle at a single point. [5]

Note: The point where the three internal angle bisectors of a triangle are concurrent is called the incentre of the triangle and the circle is called the incircle of the triangle.

Note: This gives us three centres for a triangle so far, starting with the centroid from Assignment \#3. It is traditional to denote the centroid by G, the circumcentre by C, and the incentre by H. Still to come are the orthocentre, where the three altitudes meet, usually denoted by H, and the centre of the nine-point circle of the triangle, usually denoted by N. There are thousands of other definitions of centres of a triangle ...

