Mathematics $2260 H$ - Geometry I: Euclidean geometry Trent University, Fall 2015
 Assignment \#3
 Areas \Longrightarrow Intersections
 Due on Monday, 19 October, 2015.

1. Show that a triangle with a base of length b and height h has area $\frac{1}{2} b h$. [1]

Note: You may use any correct method to prove 1.
The following result appears to have been first obtained by the Arab mathematician Yusuf ibn Ahmad al-Mu'taman ibn Hud, who also served as the ruler of the Emirate of Zaragoza from 1082 to 1085. It was later rediscovered by an Italian Jesuit, Giovanni Ceva (1647-1734). The fact that someone else got there first doesn't seem to have been known until most of Yusuf ibn Hud's major work, the Kitab al-Istikmal, was reassembled from fragments of surviving manuscripts in the 1980s.

Ceva's Theorem: Suppose D, E, and F are points on the sides $B C, A C$, and $A B$, respectively, of $\triangle A B C$. Then $A D, B E$, and $C F$ all meet in a single point G if and only if $\frac{|A F|}{|F B|} \cdot \frac{|B D|}{|D C|} \cdot \frac{|C E|}{|E A|}=1$.

2. Prove Ceva's Theorem. [$8=2 \times 4$ each for each direction]

Hint: (\Longrightarrow) Exploit the fact that the areas of two triangles with the same height are in the same proportion as their bases. Recast the product of ratios as a product of ratios of areas of subtriangles in two different ways, and from there recast it as a third product of ratios of areas of subtriangles.
(\Longleftarrow) Let G be the intersection of $A D$ and $B E$ and extend $C G$ until it intersects $A B$ at H. Use the \Longrightarrow to help show that $H=F$.
3. Use Ceva's Theorem to verify that the three medians of a triangle [the lines joining each vertex to the midpoint of the opposite side] are concurrent [meet at a single point]. [1]
Note: The point where the three medians of a triangle are concurrent is the centroid of the triangle. It is one of several possible "centres" of the triangle; we will encounter several others later.

