Mathematics 226H - Geometry I: Euclidean geometry
 Trent University, Fall 2006

 Quizzes

 Quizzes}

Quiz \#1. 22 September, 2006 [5 minutes]

1. Suppose that the angle bisector of $\angle A$ in $\triangle A B C$ is also the altitude from vertex A. Show that $\triangle A B C$ is isosceles. [5]

Quiz \#2. 29 September, 2006 [5 minutes]

1. Suppose $A B$ is a diameter of a circle and P is any other point on the circle. Show that $\angle A P B=90^{\circ}$. [5]

Quiz \#3. 6 October, 2006 [5 minutes]

1. Show that the triangle whose vertices are the midpoints of the sides of $\triangle A B C$ (i.e. the medial triangle) is similar to $\triangle A B C$. [5]

Quiz \#4. 13 October, 2006 [5 minutes]

1. Give an example of triangles $\triangle A B C$ and $\triangle P Q R$ which have the same circumcentre and the same centroid, but are not congruent. [5]
Quiz \#5. 20 October, 2006 [5 minutes]
2. Suppose $\triangle A B C$ is not a right triangle and H is its orthocentre. Verify that C is the orthocentre of $\triangle A B H$. [5]

Quiz \#6. 3 November, 2006 [5 minutes]

1. The centroid of an equilateral triangle is also its incentre. What is the ratio of the circumradius of the triangle to the inradius? [5]

Quiz \#7. 10 November, 2006 [5 minutes]

1. Suppose $A B C D E F$ is a regular hexagon inscribed in a circle, and S and T are the intersections of $B F$ and $C F$, respectively, with $A D$. Compute $\mathbf{c r}(A, S, T, D)$. [5]

Hint: The following values of $\sin (\theta)$ may be of some use:

θ	$\sin (\theta)$
0°	0
30°	$\frac{1}{2}$
60°	$\frac{1}{2} \sqrt{3}$
90°	1

Quiz \#8. 17 November, 2006 [7 minutes]

1. Suppose $\triangle A B C$ has $|A B|=4 \sqrt{2},|A C|=5$, and $|B C|=7$. Assume that $A P$ is the altitude from A and $|A P|=4, C R$ is the median from C, and Q is chosen on $A C$ so that $A P, B Q$, and $C R$ are concurrent. Determine $|Q A|$. [5]

Quiz \#9. 24 November, 2006 [7 minutes]

1. Suppose $A-J$ are the vertices of nine equilateral triangles arranged to form a large equilateral triangle as in the diagram, and suppose K is the point on $J C$ such that $|J K|=\frac{1}{3}|J C|$. Show that A, K, and E are collinear. [5]

Quiz \#10. 1 December, 2006 [7 minutes]

1. Suppose $P-S$ and $W-Z$ are the vertices of several adjacent congruent isosceles righttriangles as in the diagram, and suppose U is the point of intersection of $S Z$ with $R Y$. Show that P, U, and W are collinear. [5]

Quiz \#11. 7 December, 2006 [5 minutes]

1. Given a circle, find a ruler and compass construction which locates the centre of the circle. [5]

