Mathematics 226H - Geometry I: Euclidean geometry
 Trent University, Fall 2006
 Quiz Solutions

Quiz \#1. 22 September, 2006 [5 minutes]

1. Suppose that the angle bisector of $\angle A$ in $\triangle A B C$ is also the altitude from vertex A. Show that $\triangle A B C$ is isosceles. [5]

Solution. Let Z be the point at which the bisector of $\angle A$ intersects $B C$. Since $A Z$ bisects $\angle A$, it follows by definition that $\angle Z A B=\angle Z A C$. Observe that because the bisector of $\angle A$ is also the altitude from $A, \angle A Z B=\angle A Z C=90^{\circ}$, and note that it is trivial that $|A Z|=|A Z|$. Hence $\triangle A Z B \cong \triangle A Z C$ because the angle-side-angle criterion is satisfied. It follows that $|A B|=|A C|$, and so $\triangle A B C$ is isosceles by definition.

Quiz \#2. 29 September, 2006 [5 minutes]

1. Suppose $A B$ is a diameter of a circle and P is any other point on the circle. Show that $\angle A P B=90^{\circ}$. [5]

Solution. $\angle A P B$ is inscribed in a circle, and so must be equal to half of the arc that it subtends. Since $A B$ is a diameter of the circle, the arc subtended by $\angle A P B$ is half of the circle, i.e. 180°. Hence $\angle A P B=90^{\circ}$.

Quiz \#3. 6 October, 2006 [5 minutes]

1. Show that the triangle whose vertices are the midpoints of the sides of $\triangle A B C$ (i.e. the medial triangle) is similar to $\triangle A B C$. [5]

Solution. Let X, Y, and Z be the midpoints of $A B, B C$, and $A C$ respectively. It follows that $|X Y|=\frac{1}{2}|A C|,|Y Z|=\frac{1}{2}|A B|$, and $|X Z|=\frac{1}{2}|B C|$ (by Corollary 1.31). Hence the sides of $\triangle Y Z X$ are proportional to the sides of $\triangle A B C$, so $\triangle Y Z X \sim \triangle A B C$ (by Theorem 1.32).

Quiz \#4. 13 October, 2006 [5 minutes]

1. Give an example of triangles $\triangle A B C$ and $\triangle P Q R$ which have the same circumcentre O and the same centroid G, but are not congruent.

Solution. Recall that the centroid and circumcentre coincide for any equilateral triangle. It follows that any two equilateral triangles of different sizes (hence not congruent) will serve as an example if positioned so that their centroids are at the same place.

Quiz \#5. 20 October, 2006 [5 minutes]

1. Suppose $\triangle A B C$ is not a right triangle and H is its orthocentre. Verify that C is the orthocentre of $\triangle A B H$. [5]

Solution. Let X, Y, and Z be the feet of the altitudes of $\triangle A B C$ from A, B, and C, respectively, so that H is the common point of intersection of the lines $A X, B Y$, and $C Z$. Then, by the definition of altitude, it follows that $A X \perp B C, B Y \perp A C$, and $C Z \perp A B$. Since the lines $A H, B H$, and $C H$ are the same lines as $A X, B Y$, and $C Z$, respectively, it now follows that $A H \perp B C$ (so $B C \perp A H$), $B H \perp A C$ (so $A C \perp B H$), and $C H \perp A B$ (so $H C \perp A B$). Hence the lines $A C, B C$, and $H C$ each pass through one of the vertices of and are perpendicular to the opposite side of $\triangle A B H$. Thus these lines are the altitudes of $\triangle A B H$, and since they obviously all pass through C, it must be the orthocentre of $\triangle A B H$.

Quiz \#6. 3 November, 2006 [5 minutes]

1. The centroid of an equilateral triangle is also its circumcentre and its incentre. What is the ratio of the circumradius of the triangle to the inradius? [5]

Solution. Suppose $\triangle A B C$ is equilateral, G is its centroid (also incentre and circumcentre), and the median (also altitude and angle bisector) from A meets $B C$ at X. Then the inradius of $\triangle A B C$ is $|G X|$ and the circumradius is $|A G|$. However, we know that the centroid G lies two thirds of the way from A to X along the median $A X$ (Theorem 2.7). Hence, the ratio of the circumradius of the triangle to the inradius is

$$
\frac{|A G|}{|G X|}=\frac{2}{1}=2 .
$$

Quiz \#7. 10 November, 2006 [5 minutes]

1. Suppose $A B C D E F$ is a regular hexagon inscribed in a circle, and S and T are the intersections of $B F$ and $C F$, respectively, with $A D$. Compute $\mathbf{c r}(A, S, T, D)$. [5]

Hint: The following values of $\sin (\theta)$ may be of some use:

Solution 1. Note that A, B, C, and D are on the circle and in persepective with the collinear points A, S, T, and D, respectively, from the point F on the circle. It follows that

$$
\begin{aligned}
\mathbf{c r}(A, S, T, D) & =\mathbf{c r}(A, B, C, D) \\
& =\frac{\sin \left(\frac{1}{2} \operatorname{arc}(A C)\right) \sin \left(\frac{1}{2} \operatorname{arc}(B D)\right)}{\sin \left(\frac{1}{2} \operatorname{arc}(A D)\right) \sin \left(\frac{1}{2} \operatorname{arc}(B C)\right)} \\
& =\frac{\sin \left(60^{\circ}\right) \sin \left(60^{\circ}\right)}{\sin \left(90^{\circ}\right) \sin \left(30^{\circ}\right)} \\
& =\frac{\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}}{1 \cdot \frac{1}{2}} \\
& =\frac{3}{2} .
\end{aligned}
$$

Solution 2. Observe that $A D$ and $C F$ are diameters of the circle, and hence their intersection, T, is the centre of the circle. Since $A B C D E F$ is a regular hexagon each of its sides is equal to the radius of the circle (Why?) and it follows that $B F$ bisects $A T$ at S. This means that $|A S|=|S T|,|A T|=2|S T|,|S D|=3|S T|,|A D|=4|S T|$. Hence

$$
\mathbf{c r}(A, S, T, D)=\frac{|A T| \cdot|S D|}{|A D| \cdot|S T|}=\frac{2|S T| \cdot 3|S T|}{4|S T| \cdot|S T|}=\frac{3}{2} .
$$

Quiz \#8. 17 November, 2006 [7 minutes]

1. Suppose $\triangle A B C$ has $|A B|=4 \sqrt{2},|A C|=5$, and $|B C|=7$. Assume that $A P$ is the altitude from A and $|A P|=4, C R$ is the median from C, and Q is chosen on $A C$ so that $A P, B Q$, and $C R$ are concurrent. Determine $|Q A|$. [5]

Solution. Since $A P, B Q$, and $C R$ are concurrent, it follows by Ceva's Theorem that

$$
\frac{|A R|}{|R B|} \cdot \frac{|B P|}{|P C|} \cdot \frac{|C Q|}{|Q A|}=1
$$

We have information about several parts of this product. First, since $C R$ is the median from C, R is the midpoint of $A B$, i.e. $|A R|=|R B|$, so $\frac{|A R|}{|R B|}=1$. Second, consider $\triangle A P C$. We are given that $|A C|=5,|A P|=4$, and that $\angle A P C=90^{\circ}$ (since $A P$ is an altitude). By the Pythagorean Theorem, $25=|A C|^{2}=|A P|^{2}+|P C|^{2}=16+|P C|^{2}$, so $|P C|=\sqrt{25-16}=\sqrt{9}=3$. It follows that $|B P|=|B C|-|P C|=7-3=4$, and so $\frac{|B P|}{|P C|}=\frac{4}{3}$.

Plugging this information into the above product gives $1 \cdot \frac{4}{3} \cdot \frac{|C Q|}{|Q A|}=1$, i.e. $\frac{|C Q|}{|Q A|}=\frac{3}{4}$, and hence $|C Q|=\frac{3}{4}|Q A|$. On the other hand, $5=|A C|=|C Q|+|Q A|=\frac{3}{4}|Q A|+|Q A|=$ $\frac{7}{4}|Q A|$. Thus $|Q A|=\frac{4}{7} \cdot 5=\frac{20}{7}$.

Quiz \#9. 24 November, 2006 [7 minutes]

1. Suppose $A-J$ are the vertices of nine equilateral triangles arranged to form a large equilateral triangle as in the diagram, and suppose K is the point on $J C$ such that $|J K|=\frac{1}{3}|J C|$. Show that A, K, and E are collinear. [5]

Solution. We will apply Menelaus' Theorem with respect to $\triangle H I J$. Note that A is on the line $H I$ and $\frac{|H A|}{|A I|}=\frac{2}{1}, E$ is on the line $I J$ and $\frac{|I E|}{|E J|}=\frac{2}{1}$, and K is on the line $J H$ and $\frac{|J K|}{|K H|}=\frac{1 / 3}{4 / 3}=\frac{1}{4}$. Note also that all three of A, K, and E are not on $\triangle H I J$. Thus

$$
\frac{|H A|}{|A I|} \cdot \frac{|I E|}{|E J|} \cdot \frac{|J K|}{|K H|}=\frac{2}{1} \cdot \frac{2}{1} \cdot \frac{1}{4}=\frac{4}{4}=1
$$

and it follows by Menelaus' Theorem that A, K, and E are collinear, as desired.
Quiz \#10. 1 December, 2006 [7 minutes]

1. Suppose $P-S$ and $W-Z$ are the vertices of several adjacent congruent isosceles righttriangles as in the diagram, and suppose U is the point of intersection of $S Z$ with $R Y$. Show that P, U, and W are collinear. [5]

Solution. Note that the three points Q, R, and S are collinear, as are the three points X, Z, and Y. Observe that the lines $Q Z$ and $X R$ intersect in P, the lines $Q Y$ and $X S$ intersect in W, and the lines $R Y$ and $Z S$ intersect in U. It follows by Pappus' Theorem that the points P, U, and W are collinear.

Quiz \#11. 7 December, 2006 [5 minutes]

1. Given a circle, find a ruler and compass construction which locates the centre of the circle. [5]

Solution. Here is a construction that does the job:
i. Pick any three distinct point A, B, and C on the given circle.
ii. Draw the line segments $A B, A C$, and $B C$ connecting these three points to make $\triangle A B C$. Note that the given circle is then the circumcircle of $\triangle A B C$.
iii. Construct the perpendicular bisectors of each side of $\triangle A B C$ and extend them until they intersect at a common point. This common point is the centre of the given circle.
This construction works because the centre of the given circle is the circumcentre of $\triangle A B C$, which we know is the common point of intersection of the perpendicular bisectors of the sides of the triangle.

