Mathematics 226 H - Geometry I: Euclidean geometry
 Trent University, Fall 2006

Solutions to Problem Set \#7

1. (Exercise 2E.2) Suppose that the centroid and incentre of $\triangle A B C$ are the same point. Prove that the triangle is equilateral. [5]

Solution. Suppose $A P, B Q$, and $C R$ are the medians of $\triangle A B C$ and G is the centroid. By Theorem 2.7, the centroid is two-thirds of the way along each median from the vertex to the opposite side, so each median is three times the length of the segment from the centroid to the opposite side. That is, $|A P|=3|G P|,|B Q|=3|G Q|$, and $|C R|=3|G R|$. Since G is also the incentre, $A P, B Q$, and $C R$ are also the angle bisectors of $\triangle A B C$. It follows that $|G P|=|G Q|=|G R|$, because these three line segments are all radii of the incircle, and hence the three medians are of equal length, i.e. $|A P|=|B Q|=|C R|$. Problem 2.8 now implies that $|A B|=|A C|$ because $|B Q|=|C R|$ and that $|A C|=|B C|$ because $|A P|=|B Q|$. Thus $|A B|=|A C|=|B C|$, so $\triangle A B C$ is equilateral.
2. (Exercise 2G.1) Join each vertex of $\triangle A B C$ to the points of trisection of the opposite side and let X, Y, and Z be the points of intersection of these side-trisectors, as shown in the figure below [or Figure 2.26 in the text]. Show that the sides $\triangle X Y Z$ are parallel to corresponding sides of $\triangle A B C$ and that $\triangle X Y Z \sim \triangle A B C$. [5]
Solution. Let the points of trisection of the sides of $\triangle A B C$ be D, E, F, G, H, and I, respectively, if we move clockwise around the triangle from vertex C. (See the figure.) Then X, Y, and Z are the intersections of $B D$ and $C G, A I$ and $C F$, and $A H$ and $B E$, respectively.

Note that because D and E trisect $A c$ and F and G trisect $A B$,

$$
\frac{|A D|}{|A C|}=\frac{|A G|}{|A B|}=\frac{2}{3},
$$

so $D G \| C B$ by Lemma 1.29. Since $A C$ meets these parallel lines, it follows that $\angle A D G=$ $\angle A C B$. As we also have that $\angle D A G=\angle C A B$ (because they are the same angle), it now follows from the angle-angle similarity criterion that $\triangle A G D \sim \triangle A B C$. This, by Theorem 1.28, implies that

$$
\frac{|D G|}{|C B|}=\frac{|A D|}{|A C|}=\frac{|A G|}{|A B|}=\frac{2}{3} .
$$

Since $D G \| C B$, the " Z-Theorem" implies that $\angle C B D=\angle B D G$ and $\angle B C G=\angle C G D$. The angle-angle similarity criterion then gives that $\triangle B C X \sim \triangle D G X$ and, since we also have $|D G| /|B C|=\frac{2}{3}$, it follows that

$$
\frac{|D X|}{|X B|}=\frac{|G X|}{|X C|}=\frac{|D G|}{|B C|}=\frac{2}{3} .
$$

Hence

$$
\begin{aligned}
|D B|=|D X|+|X B| & =\frac{2}{3}|X B|+|X B|=\frac{5}{3}|X B| \quad \text { and } \\
|G C| & =|G X|+|X C|=\frac{2}{3}|X C|+|X C|=\frac{5}{3}|X C|,
\end{aligned}
$$

, so

$$
|X B|=\frac{3}{5}|D B| \quad \text { and } \quad|X C|=\frac{3}{5}|G C| .
$$

Similar arguments allow us to conclude that

$$
|Y C|=\frac{3}{5}|F C|, \quad|Y A|=\frac{3}{5}|I A|, \quad|Z A|=\frac{3}{5}|H A|, \quad \text { and } \quad|Z B|=\frac{3}{5}|E B| .
$$

Since

$$
\frac{|A Y|}{|A I|}=\frac{|A Z|}{|A H|}=\frac{3}{5},
$$

it now follows from Lemma 1.29 that $Y Z \| I H$, and hence that $Y Z \| B C$ (since $I H$ is a segment of $B C$). Also, since $\angle A$ is common to both triangles, Theorem 1.33 implies that $\triangle A I H \sim \triangle A Y Z$, and it follows that

$$
|Y Z|=\frac{3}{5}|I H|=\frac{3}{5} \cdot \frac{1}{3}|B C|=\frac{1}{5}|B C| .
$$

Similarly, $X Y \| A B$, with $|X Y|=\frac{1}{5}|A B|$, and $X Z \| A C$, with $|X Z|=\frac{1}{5}|A C|$. Since the sides of $\triangle X Y Z$ are proportional to the corresponding sides of $\triangle A B C$, Theorem 1.32 implies that $\triangle X Y Z \sim \triangle A B C$, as required.

