Mathematics 226H – Geometry I: Euclidean geometry TRENT UNIVERSITY, Fall 2006

Solution to Problem Set #6

1. Suppose $\triangle ABC$ is not equilateral. Must the incentre of this triangle be on its Euler line? Prove it or give a counterexample. [10]

Solution. The incentre of a non-equilateral triangle need not be on its Euler line, as the following counterexample demonstrates.

Consider the 3-4-5 triangle in the Cartesian plane with vertices A = (0,0), B = (0,3), and C = (4,0). Note that $\triangle ABC$ is a right triangle with the right angle at A = (0,0). It is easy to see that sides AB and AC of the triangle are altitudes, and hence that the orthocentre of $\triangle ABC$ is the vertex A = (0,0). It is also easy to check that the midpoint of BC, $(2, \frac{3}{2})$, is equidistant from A, B, and C, and hence is the circumcentre of $\triangle ABC$. The Euler line is the line joining the orthocentre and circumcentre, which in this case has equation $y = \frac{3}{4}x$.

The incentre of $\triangle ABC$ is the intersection of the three angle bisectors of the triangle, so it must be on each of them. Observe that the bisector of the right angle at A = (0,0)is obviously the line y = x. The only point at which the Euler line and the angle bisector at A = (0,0) meet is A = (0,0), but this cannot be the incentre as it is a vertex of the triangle. (The incentre has to be *inside* the triangle ...) Hence the incentre of $\triangle ABC$ is not on the Euler line.

Note: The argument above shows that the incentre of $\triangle ABC$ is not on the Euler line without ever explicitly locating the incentre.

Note the second: In an isosceles triangle the incentre does have to be on the Euler line. (Why?)