Mathematics 226H - Geometry I: Euclidean geometry
 Trent University, Fall 2006
 Problem Set \#5

1. (Exercise 2A.3) Given acute angled $\triangle A B C$, extend the altitudes from A, B, and C to meet the circumcircle at points X, Y, and Z, respectively. Show that lines $A X$, $B Y$, and $C Z$ bisect the three angles of $\triangle X Y Z$. [5]

Solution. Let H denote the orthocentre of $\triangle A B C$, the point at which the three altitudes from A, B, and C intersect. (Note that since $\triangle A B C$ is acute angled, H is inside the triangle.) Also, let S be the point at which $A X$ intersects $B C, T$ be the point at which $B Y$ intersects $A C$, and U be the point at which $C Z$ intersects $A B$. We will show that $A X$ bisects $\angle Y X Z$.

Observe that $\angle T H C=\angle U H B$ (opposite angles) and $\angle C T H=90^{\circ}=\angle B U H$ (since $B T$ and $C U$ are altitudes of $\triangle A B C)$. By the angle-angle similarity criterion, we have $\triangle C H T \sim \triangle B H U$, and hence $\angle T C H=\angle U B H$. It now follows, using Theorem 1.16, that

$$
\angle A X Z=\frac{1}{2} \operatorname{arc}(A Z)=\angle A C Z=\angle T C H=\angle U B H=\angle A B Y=\frac{1}{2} \operatorname{arc}(A Y)=\angle A X Y .
$$

Thus $A X$ does bisect $\angle Y X Z$, the angle at X of $\triangle X Y Z$.
Similar arguments show that $B Y$ and $C Z$ bisect the angles at Y and Z, respectively, of $\triangle X Y Z$.
2. (Exercise 2B.1) Show that the centroid of the medial triangle of $\triangle A B C$ is the centroid of $\triangle A B C$. [5]

Solution. Let X, Y, and Z be the midpoints of the sides $B C, A C$, and $A B$, respectively, of $\triangle A B C$. Now let G be the centroid of $\triangle A B C$; by definition, this means that G is the common point of intersection of the medians $A X, B Y$, and $C Z$. To show that G is also the centroid of $\triangle X Y Z$ it is sufficient to show that that the medians of $\triangle A B C$ are also medians of $\triangle X Y Z$. That is, we need to verify that $A X$ bisects $Y Z, B Y$ bisects $X Z$, and $C Z$ bisects $X Y$.

Note that by Corollary 1.31, $X Y\|A B, Y Z\| B C$, and $X Z \| A C$, and also $|X Y|=$ $\frac{1}{2}|A B|,|Y Z|=\frac{1}{2}|B C|$, and $\left.|X Z|=\frac{1}{2} \right\rvert\, A C$. (By the side-side-side criterion for similarity, it follows from the latter facts that $\triangle X Y Z \sim \triangle A B C$.) Let P be the point of intersection of $A X$ with $Y Z$. We will show that $\triangle A X C \sim \triangle X P Z$.

Since $Y Z$ is a transversal between the parallel lines $A C$ and $X Z$ and $\angle A Y Z=\angle X Z Y$. As $A C$ is a transversal between the parallel lines $Y Z$ and $B C$, it now follows $\angle A C X=$ $\angle A Y Z=\angle Z X Y$. Since $A X$ is another transversal between the parallel lines $A C$ and $X Z$, we also have that $\angle X A P=\angle P X Z$. Hence, by the angle-angle criterion for similarity of triangles, $\triangle A X C \sim \triangle X P Z$.

Because these triangles are similar, it follows that $\frac{|P Z|}{|X C|}=\frac{|X Z|}{|A C|}=\frac{1}{2}$, i.e. $|P Z|=$ $\frac{1}{2}|X C|=\frac{1}{2}\left(\frac{1}{2}|B C|\right)=\frac{1}{2}|Y Z|$. Thus $A X$ bisects $Y Z$ at P, i.e. $A X$ is also a median of $\triangle X Y Z$.

Similar arguments can be used to show that the other medians of $\triangle A B C$ are also medians of $\triangle X Y Z$, from which it follows that the centroid of $\triangle A B C$ is also the centroid of its medial triangle, $\triangle X Y Z$.
3. (Exercise 2C.2) Show that the circumcentre of $\triangle A B C$ is the orthocentre of the medial triangle. [5]

Solution. Let X, Y, and Z be the midpoints of the sides $B C, A C$, and $A B$, respectively, of $\triangle A B C$. The circumcentre P of $\triangle A B C$ is the common intersection of the perpendicular bisectors of the sides $B C, A C$, and $A B$. Note that by Corollary 1.31, $X Y\|A B, Y Z\| B C$, and $X Z \| A C$. It follows that $X P \perp Y Z, Y P \perp X Z$, and $Z P \perp X Y$, and hence the lines $X P, Y P$, and $Z P$ are the altitudes of $\triangle X Y Z$ (from X, Y, and Z, respectively). Since these altitudess all intersect at P, this point is the orthocentre of $\triangle X Y Z$, the medial triangle of $\triangle A B C$.

