Mathematics 226H - Geometry I: Euclidean geometry Trent University, Fall 2006

Solutions to Problem Set \#4

1. (Exercise 1H.6) In the figure below [Figure 1.45 in the text], line segments $P A, P B$, and $P C$ join point P to the three vertices of $\triangle A B C$. We have chosen point Y on $P B$ and drawn $Y X$ and $Y Z$ parallel to $B A$ and $B C$, respectively, where X lies on $P A$ and Z lies on $P C$. Prove that $X Z \| A C$. [5]

Solution. $\triangle A B P$ and $\triangle X Y P$ have a common angle at P, so $\angle A P B=\angle X P Y$. Since $A B \| X Y$ and $A P$ crosses $X Y$ at X, and corresponding angles of a transversal to two parallel lines are equal, we also have that $\angle P A B=\angle P X Y$. By the angle-angle similarity criterion it follows that $\triangle A B P \sim \triangle X Y P$. A similar argument to the one above shows that $\triangle C B P \sim \triangle Z Y P$.

Since $B P$ is a common side of $\triangle A B P$ and $\triangle C B P$ and $Y P$ is a common side of $\triangle X Y P$ and $\triangle Z Y P$, the scaling factors in the above pairs of similar triangles are the same. In particular, $\frac{|P X|}{|P A|}=\frac{|P Y|}{|P B|}=\frac{|P Z|}{|P C|}$. Applying this fact to $\triangle A C P$, we get that $X Z \| A C$ by Lemma 1.29.
2. (Exercise 2A.1) Show that quadrilateral $A B C D$ can be inscribed in a circle if and only if $\angle B$ and $\angle D$ are supplementary. [5]
Hint: To prove if, show that D lies on the unique circle through A, B, and C.
Note: A quadrilateral inscribed in a circle is said to be cyclic.

Solution. We will prove the two directions of the "if and only if" separately.
$(\Longrightarrow$ i.e. "only if"]) Suppose that quadrilateral $A B C D$ can be inscribed in a circle. Then $\angle B=\frac{1}{2} \operatorname{arc}(A D C)$ and $\angle D=\frac{1}{2} \operatorname{arc}(A B C)$ by Theorem 1.16. However, the two arcs make up the whole circle between them, so:

$$
\angle B+\angle D=\frac{1}{2} \operatorname{arc}(A D C)+\frac{1}{2} \operatorname{arc}(A B C)=\frac{1}{2}(\operatorname{arc}(A D C)+\operatorname{arc}(A B C))=\frac{1}{2} \cdot 360^{\circ}=180^{\circ}
$$

Hence $\angle B$ and $\angle D$ are supplementary.
($\Longleftarrow[$ i.e. "if"]) Suppose $A B C D$ is a quadrilateral such that $\angle B$ and $\angle D$ are supplementary. Consider the possible locations of D with respect to the unique circle passing through A, B, and C. There are three cases:
i. D is inside the circle.
ii. D is on the circle.
iii. D is outside the circle.

ii. "On"

iii. "Out"

In case $i i$, of course, we're done. We will show that cases i and $i i i$ cannot occur. In each of these two cases, let X and Y be the intersections of $A D$ and $C D$, respectively, with the circle passing through A, B, and C. In case i, of course, we have to extend $A D$ and $C D$ to meet the circle in order to locate X and Y. Note that in both cases $\angle B=\angle A B C=\frac{1}{2} \operatorname{arc}(A X C)$ by Theorem 1.16.

In case i, it follows from Corollary 1.19 that $\angle D=\frac{1}{2}(\operatorname{arc}(A B C)+\operatorname{arc}(X Y))$, so

$$
\begin{aligned}
\angle B+\angle D & =\frac{1}{2} \operatorname{arc}(A X C)+\frac{1}{2}(\operatorname{arc}(A B C)+\operatorname{arc}(X Y)) \\
& =\frac{1}{2}(\operatorname{arc}(A B C)+\operatorname{arc}(A X C))+\frac{1}{2} \operatorname{arc}(X Y) \\
& =\frac{1}{2} 360^{\circ}+\frac{1}{2} \operatorname{arc}(X Y)>180^{\circ} .
\end{aligned}
$$

This contradicts the fact that $\angle B$ and $\angle D$ are supplementary, so case i cannot occur.
In case $i i i$, it follows from Corollary 1.18 that $\angle D=\frac{1}{2}(\operatorname{arc}(A B C)-\operatorname{arc}(X Y))$, so

$$
\begin{aligned}
\angle B+\angle D & =\frac{1}{2} \operatorname{arc}(A X C)-\frac{1}{2}(\operatorname{arc}(A B C)+\operatorname{arc}(X Y)) \\
& =\frac{1}{2}(\operatorname{arc}(A B C)+\operatorname{arc}(A X C))-\frac{1}{2} \operatorname{arc}(X Y) \\
& =\frac{1}{2} 360^{\circ}-\frac{1}{2} \operatorname{arc}(X Y)<180^{\circ} .
\end{aligned}
$$

This contradicts the fact that $\angle B$ and $\angle D$ are supplementary, so case $i i i$ also cannot occur.
Since cases i and $i i i$ contradict the premiss that $\angle B$ and $\angle D$ are supplementary, it follows that case $i i$ must hold, i.e. that D is on the circle passing through A, B, and C. Hence the quadrilateral $A B C D$ can be inscribed in a circle.

