Mathematics 226H – Geometry I: Euclidean geometry

TRENT UNIVERSITY, Fall 2006

Solutions to Problem Set #4

1. (Exercise 1H.6) In the figure below [Figure 1.45 in the text], line segments PA, PB, and PC join point P to the three vertices of $\triangle ABC$. We have chosen point Y on PB and drawn YX and YZ parallel to BA and BC, respectively, where X lies on PA and Z lies on PC. Prove that $_{A}XZ \parallel AC$. [5]

Solution. $\triangle ABP$ and $\triangle XYP$ have a common angle at P, so $\angle APB = \angle XPY$. Since $AB \parallel XY$ and AP crosses XY at X, and corresponding angles of a transversal to two parallel lines are equal, we also have that $\angle PAB = \angle PXY$. By the angle-angle similarity criterion it follows that $\triangle ABP \sim \triangle XYP$. A similar argument to the one above shows that $\triangle CBP \sim \triangle ZYP$.

Since BP is a common side of $\triangle ABP$ and $\triangle CBP$ and YP is a common side of $\triangle XYP$ and $\triangle ZYP$, the scaling factors in the above pairs of similar triangles are the same. In particular, $\frac{|PX|}{|PA|} = \frac{|PY|}{|PB|} = \frac{|PZ|}{|PC|}$. Applying this fact to $\triangle ACP$, we get that $XZ \parallel AC$ by Lemma 1.29.

2. (Exercise 2A.1) Show that quadrilateral ABCD can be inscribed in a circle if and only if $\angle B$ and $\angle D$ are supplementary. [5]

Hint: To prove if, show that D lies on the unique circle through A, B, and C. *Note:* A quadrilateral inscribed in a circle is said to be *cyclic*.

Solution. We will prove the two directions of the "if and only if" separately.

 $(\implies [i.e. "only if"])$ Suppose that quadrilateral ABCD can be inscribed in a circle. Then $\angle B = \frac{1}{2} \operatorname{arc}(ADC)$ and $\angle D = \frac{1}{2} \operatorname{arc}(ABC)$ by Theorem 1.16. However, the two arcs make up the whole circle between them, so:

$$\angle B + \angle D = \frac{1}{2}\operatorname{arc}(ADC) + \frac{1}{2}\operatorname{arc}(ABC) = \frac{1}{2}\left(\operatorname{arc}(ADC) + \operatorname{arc}(ABC)\right) = \frac{1}{2} \cdot 360^{\circ} = 180^{\circ}$$

Hence $\angle B$ and $\angle D$ are supplementary.

(\Leftarrow [*i.e.* "if"]) Suppose *ABCD* is a quadrilateral such that $\angle B$ and $\angle D$ are supplementary. Consider the possible locations of *D* with respect to the unique circle passing through *A*, *B*, and *C*. There are three cases:

- *i*. *D* is inside the circle.
- *ii.* D is on the circle.
- *iii.* D is outside the circle.

In case *ii*, of course, we're done. We will show that cases *i* and *iii* cannot occur. In each of these two cases, let X and Y be the intersections of AD and CD, respectively, with the circle passing through A, B, and C. In case *i*, of course, we have to extend AD and CD to meet the circle in order to locate X and Y. Note that in both cases $\angle B = \angle ABC = \frac{1}{2} \operatorname{arc}(AXC)$ by Theorem 1.16.

In case *i*, it follows from Corollary 1.19 that $\angle D = \frac{1}{2} (\operatorname{arc}(ABC) + \operatorname{arc}(XY))$, so

$$\begin{split} \angle B + \angle D &= \frac{1}{2}\operatorname{arc}(AXC) + \frac{1}{2}\left(\operatorname{arc}(ABC) + \operatorname{arc}(XY)\right) \\ &= \frac{1}{2}\left(\operatorname{arc}(ABC) + \operatorname{arc}(AXC)\right) + \frac{1}{2}\operatorname{arc}(XY) \\ &= \frac{1}{2}360^\circ + \frac{1}{2}\operatorname{arc}(XY) > 180^\circ \,. \end{split}$$

This contradicts the fact that $\angle B$ and $\angle D$ are supplementary, so case *i* cannot occur.

In case *iii*, it follows from Corollary 1.18 that $\angle D = \frac{1}{2} (\operatorname{arc}(ABC) - \operatorname{arc}(XY))$, so

$$\begin{split} \angle B + \angle D &= \frac{1}{2}\operatorname{arc}(AXC) - \frac{1}{2}\left(\operatorname{arc}(ABC) + \operatorname{arc}(XY)\right) \\ &= \frac{1}{2}\left(\operatorname{arc}(ABC) + \operatorname{arc}(AXC)\right) - \frac{1}{2}\operatorname{arc}(XY) \\ &= \frac{1}{2}360^\circ - \frac{1}{2}\operatorname{arc}(XY) < 180^\circ \,. \end{split}$$

This contradicts the fact that $\angle B$ and $\angle D$ are supplementary, so case *iii* also cannot occur.

Since cases *i* and *iii* contradict the premiss that $\angle B$ and $\angle D$ are supplementary, it follows that case *ii* must hold, *i.e.* that *D* is on the circle passing through *A*, *B*, and *C*. Hence the quadrilateral *ABCD* can be inscribed in a circle.