Mathematics 2200H – Mathematical Reasoning

TRENT UNIVERSITY, Fall 2025

Assignment #9

Equivalence Classes and Modular Arithmetic

Due on Friday, 14 November.*

Recall that \equiv is an *equivalence relation* on a set S if it is a binary relation on S that is:

- 1. reflexive for all $s \in S$, $s \equiv s$,
- 2. symmetric for all $s, t \in S$, $s \equiv t$ if and only if $t \equiv s$, and
- 3. transitive for all $s, t, u \in S$, if $s \equiv t$ and $t \equiv u$, then $s \equiv u$.

The \equiv -equivalence class of $s \in S$ is $[s]_{\equiv} = \{ t \in S \mid s \equiv t \}$.

1. Suppose S is a set, \equiv is an equivalence class on S, and $a, b \in S$. Show that either $[a]_{\equiv} = [b]_{\equiv}$ or $[a]_{\equiv} \cap [b]_{\equiv} = \emptyset$. [4]

In the following, we (technically) work in \mathbb{Z}_n , the integers modulo n. (This needs $n \geq 2$ to avoid trivialities.) Recall that, officially, $\mathbb{Z}_n = \{ [a]_n \mid a \in \mathbb{Z} \}$, where $[a]_n$ is the equivalence class of a for the equivalence relation \equiv_n given by $a \equiv_n b$ if and only if a = b + kn for some $k \in \mathbb{Z}$. Recall also that we defined addition and multiplication in \mathbb{Z}_n by $[a]_n + [b]_n = [a+b]_n$ and $[a]_n \cdot [b]_n = [a \cdot b]_n$; these operations are then associative and commutative, and also satisfy the distributive laws.

In practice, as we do below, it is common to write $a = b \pmod{n}$ or $a \equiv b \pmod{n}$ for $a \equiv_n b$, where $a, b \in \mathbb{Z}$, and ignore the equivalence class notation, simply writing a for $[a]_{\equiv}$.

- **2.** Suppose $a, b \in \mathbb{Z}$ with gcd(a, n) = d. Show that if $d \nmid b$, then the equation $ax = b \pmod{n}$ has no solution $x \in \mathbb{Z}_n$. [3]
- **3.** Suppose $a, b \in \mathbb{Z}$ with gcd(a, n) = 1. Show that the equation $ax = b \pmod{n}$ has exactly one solution $x \in \mathbb{Z}_n$. [3]

NOTE. In fact, the result in 3 can be extended to say that if gcd(a, n) = d and $d \mid b$, then $ax = b \pmod{n}$ has exactly d solutions in \mathbb{Z}_n .

^{*} Please submit your solutions, preferably as a single pdf, via Blackboard's Assignments module. If that fails, please submit them to the instructor on paper or via email to sbilaniuk@trentu.ca as soon as you can.