Mathematics 2200H - Mathematical Reasoning

TRENT UNIVERSITY, Fall 2025

Assignment #9

Equivalence Classes and Modular Arithmetic

Due on Friday, 14 November.

Recall that \equiv is an equivalence relation on a set S if it is a binary relation on S that is:

- 1. reflexive for all $s \in S$, $s \equiv s$,
- 2. symmetric for all $s, t \in S$, $s \equiv t$ if and only if $t \equiv s$, and
- 3. transitive for all $s, t, u \in S$, if $s \equiv t$ and $t \equiv u$, then $s \equiv u$.

The \equiv -equivalence class of $s \in S$ is $[s]_{\equiv} = \{ t \in S \mid s \equiv t \}$.

1. Suppose S is a set, \equiv is an equivalence class on S, and $a, b \in S$. Show that either $[a]_{\equiv} = [b]_{\equiv}$ or $[a]_{\equiv} \cap [b]_{\equiv} = \emptyset$. [4]

SOLUTION. We need to show that $[a]_{\equiv} = [b]_{\equiv}$ or $[a]_{\equiv} \cap [b]_{\equiv} = \emptyset$ is true; it is sufficient to show that if the latter alternative fails, then the former is true.

Suppose, then, that $[a]_{\equiv} \cap [b]_{\equiv} \neq \emptyset$, *i.e.* there is some $c \in S$ such that $c \in [a]_{\equiv} \cap [b]_{\equiv}$. Since $c \in [a]_{\equiv}$, we have $c \equiv a$, and since $c \in [b]_{\equiv}$, we also have $c \equiv b$. It follows by the symmetry and transitivity of \equiv that $a \equiv b$. Now, for all $x \in S$, since we have $a \equiv b$ and \equiv is transitive, $x \equiv a$ if and only if $x \equiv b$. Then $x \in [a]_{\equiv} \iff x \equiv a \iff x \equiv b \iff x \in [b]_{\equiv}$, so $[a]_{\equiv} = [b]_{\equiv}$ by the Axiom on Extensionality. \square

In the following, we (technically) work in \mathbb{Z}_n , the integers modulo n. (This needs $n \geq 2$ to avoid trivialities.) Recall that, officially, $\mathbb{Z}_n = \{ [a]_n \mid a \in \mathbb{Z} \}$, where $[a]_n$ is the equivalence class of a for the equivalence relation \equiv_n given by $a \equiv_n b$ if and only if a = b + kn for some $k \in \mathbb{Z}$. ecall also that we defined addition and multiplication in \mathbb{Z}_n by $[a]_n + [b]_n = [a + b]_n$ and $[a]_n \cdot [b]_n = [a \cdot b]_n$; these operations are then associative and commutative, and also satisfy the distributive laws.

In practice, as we do below, it is common to write $a = b \pmod{n}$ or $a \equiv b \pmod{n}$ for $a \equiv_n b$, where $a, b \in \mathbb{Z}$, and ignore the equivalence class notation, simply writing a for $[a]_{\equiv}$.

2. Suppose $a, b \in \mathbb{Z}$ with gcd(a, n) = d. Show that if $d \nmid b$, then the equation $ax = b \pmod{n}$ has no solution $x \in \mathbb{Z}_n$. [3]

SOLUTION. Since gcd(a, n) = d is a divisor of a and n, there exist $s, t \in \mathbb{Z}$ such that a = sd and n = td.

Suppose, by way of contradiction, that we did actually have a solution x to $ax = b \pmod{n}$, i.e. ax = b + rn for some $r \in \mathbb{Z}$. Then we would have b = ax - rn = sdx - rtd = d(sx - rt), which would imply that $d \mid b$, contradicting the given fact that $d \nmid b$. Thus $ax = b \pmod{n}$ cannot have a solution. \square

3. Suppose $a, b \in \mathbb{Z}$ with gcd(a, n) = 1. Show that the equation $ax = b \pmod{n}$ has exactly one solution $x \in \mathbb{Z}_n$. [3]

SOLUTION. We need to show two things. First, that $ax = b \pmod{n}$ has a solution, and, second, that it has only one solution modulo n.

By the result in question 1 of Assignment #7, since gcd(a, n) = 1, there exist $s, t \in \mathbb{Z}$ such that as + nt = 1, so as = 1 - nt. Let x = sb. Then ax = asb = (1 - nt)b = b - btn, so $ax = b \pmod{n}$. Thus the equation $ax = b \pmod{n}$ has a solution.

Now suppose that x and y are two solutions to the equation, *i.e.* $ax = b \pmod{n}$ and $ay = b \pmod{n}$. It follows that $a(x - y) = ax - ay = b - b = 0 \pmod{n}$. Recall from the previous paragraph that as + nt = 1, so $as = 1 \pmod{n}$. Then

$$x - y = 1(x - y) \pmod{n}$$

$$= as(x - y) \pmod{n}$$

$$= sa(x - y) \pmod{n}$$

$$= s \cdot 0 \pmod{n}$$

$$= 0 \pmod{n},$$

from which it follows that $x = y \pmod{n}$.

Thus if $a, b \in \mathbb{Z}$ with $\gcd(a, n) = 1$, then the equation $ax = b \pmod{n}$ has exactly one solution $x \pmod{n}$, as required.

NOTE. In fact, the result in **3** can be extended to say that if gcd(a, n) = d and $d \mid b$, then $ax = b \pmod{n}$ has exactly d solutions in \mathbb{Z}_n .