Mathematics 2200H - Mathematical Reasoning

TRENT UNIVERSITY, Fall 2025

Assignment #7 Well-Orders

Due on Friday, 7 November.*

Recall that a (strict) linear order on a set A, let's denote it by \triangleleft , is a binary relation satisfying the following conditions:

- 1. Irreflexivity: For all $a \in A$, it is not the case that $a \triangleleft a$.
- 2. Transitivity: For all $a, b, c \in A$, if $a \triangleleft b$ and $b \triangleleft c$, then $a \triangleleft c$.
- 3. Trichotomy: For all $a, b \in A$, exactly one of $a \triangleleft b$, a = b, or $b \triangleleft a$, is true.

It is a well-order if it also satisfies the following condition:

- 4. Least element principle: If X is a non-empty subset of A, then X has a least element, i.e. there is a $y \in X$ such that for all $x \in X$, y = x or $y \triangleleft x$.
- **1.** Show that $\leq_{\mathbb{Z}}$ is not a well-order on the integers. [1]
- 2. Show that $<_{\mathbb{N}}$ is indeed a well-order on the natural numbers. (Note that we already know it is a linear order.) /5/

Another possibility for a linear order \triangleleft on a set A to satisfy is the Descending chain condition:

Every strictly decreasing sequence of elements of A, say a_0, a_1, a_2, \ldots *i.e.* $a_{k+1} \triangleleft a_k$ for each k, is finite, *i.e.* it ends at a_n for some $n \in \mathbb{N}$.

3. Show that a linear order satisfies the least element principle if and only if it satisfies the descending chain condition. [4]

^{*} Please submit your solutions, preferably as a single pdf, via Blackboard's Assignments module. If that fails, please submit them to the instructor on paper or via email to sbilaniuk@trentu.ca as soon as you can,