Mathematics 2200H - Mathematical Reasoning

TRENT UNIVERSITY, Fall 2025

Solutions to Assignment #7 #8 Well-Orders

Due on Friday, 7 November.

Recall that a (strict) linear order on a set A, let's denote it by \triangleleft , is a binary relation satisfying the following conditions:

- 1. Irreflexivity: For all $a \in A$, it is not the case that $a \triangleleft a$.
- 2. Transitivity: For all $a, b, c \in A$, if $a \triangleleft b$ and $b \triangleleft c$, then $a \triangleleft c$.
- 3. Trichotomy: For all $a, b \in A$, exactly one of $a \triangleleft b$, a = b, or $b \triangleleft a$, is true.

It is a well-order if it also satisfies the following condition:

- 4. Least element principle: If X is a non-empty subset of A, then X has a least element, i.e. there is a $y \in X$ such that for all $x \in X$, y = x or $y \triangleleft x$.
- **1.** Show that $\leq_{\mathbb{Z}}$ is not a well-order on the integers. [1]

SOLUTION. $\mathbb{Z}^- = \{-1, -2, -3, \dots\}$ is a non-empty subset of \mathbb{Z} which has no least element. Thus $<_{\mathbb{Z}}$ does not satisfy the least element principle, and so is not a well-order.

2. Show that $<_{\mathbb{N}}$ is indeed a well-order on the natural numbers. (Note that we already know it is a linear order.) [5]

SOLUTION. Since we already know that $<_{\mathbb{N}}$ is indeed a linear-order on \mathbb{N} , we only have to check that it satisfies the least element principle. Recall that $a <_{\mathbb{N}} b \iff a \in b$ by question **2** of Assignment #6.

Suppose $X \subseteq \mathbb{N}$ and $X \neq \emptyset$. By the Axiom of Foundation, there is a $k \in X$ such that $k \cap X = \emptyset$. We claim that k is the least element of X.

If k=0, it is the least element of X because 0 is the least element in all of \mathbb{N} .

If $k \neq 0$, then $k = S(m) = \{0, 1, ..., m\}$ for some $m \in \mathbb{N}$ and $k \cap X = \{0, 1, ..., m\} \cap X = \emptyset$. It follows that no $n <_{\mathbb{N}} k \iff n \in k$ is in X. By trichotomy, it follows in turn that for every $x \in X$, either x = k or $k <_{\mathbb{N}} x$. Thus k is the least element of X.

Either way, every non-empty $X \subset \mathbb{N}$ has a least element, so $<_{\mathbb{N}}$ satisfies the least element principle and thus is a well-order.

Another possibility for a linear order \triangleleft on a set A to satisfy is the Descending chain condition:

Every strictly decreasing sequence of elements of A, say $a_0, a_1, a_2, \ldots i.e.$ $a_{k+1} \triangleleft a_k$ for each k, is finite, i.e. it ends at a_n for some $n \in \mathbb{N}$.

3. Show that a linear order satisfies the least element principle if and only if it satisfies the descending chain condition. [4]

SOLUTION. (\Longrightarrow) Assume that the linear order \triangleleft on a set A satisfies the least element principle and suppose a_0, a_1, a_2, \ldots is a strictly decreasing sequence of elements of A. By the least element principle, $S = \{a_0, a_1, a_2, \ldots\}$ must have a least element, say a_n . Since the sequence is strictly descending, it can have no further elements, so it is finite.

Thus if the linear order \triangleleft on a set A satisfies the least element principle, it must also satisfy the descending chain condition.

(\Leftarrow) Assume that the linear order \triangleleft on a set A satisfies the descending chain condition, but, by way of contradiction, there is some X with $\emptyset \neq X \subseteq A$ which does not have a least element. Construct a strictly descending sequence of elements of X as follows:

- Let a_0 be any element of X.
- Given that $a_k \in X$ has been chosen and X has no least element, we can choose an $a_{k+1} \in X$ such that $a_{k+1} \triangleleft a_k$.

Since X has no least element, this process never terminates. This means that a_0, a_1, a_2, \ldots is an infinite strictly decreasing sequence of elements of A, contradicting the descending chain condition.

Thus if the linear order \triangleleft on a set A satisfies the descending chain condition, it must also satisfy the least element principle. \blacksquare