Mathematics 2200H - Mathematical Reasoning

TRENT UNIVERSITY, Fall 2025

Assignment #7 The Linear Order on \mathbb{Z}

Due on Friday, 31 October.*

Recall that a (strict) linear order on a set A, let's denote it by \triangleleft , is a binary relation satisfying the following conditions:

- 1. Irreflexivity: For all $a \in A$, it is not the case that $a \triangleleft a$.
- 2. Transitivity: For all $a, b, c \in A$, if $a \triangleleft b$ and $b \triangleleft c$, then $a \triangleleft c$.
- 3. Trichotomy: For all $a, b \in A$, exactly one of $a \triangleleft b$, a = b, or $b \triangleleft a$, is true.

Recall also that we defined the integers to be the set of equivalence classes of the equivalence relation \sim on $\mathbb{N} \times \mathbb{N} = \{(a,b) \mid a,b \in \mathbb{N}\}$ given by $(a,b) \sim (c,d) \iff a+d=b+c$. The equivalence class of (a,b) is then $[(a,b)]_{\sim} = \{(c,d) \in \mathbb{N} \times \mathbb{N} \mid (a,b) \sim (c,d)\}$ and the set of integers is $\mathbb{Z} = \{[(a,b)]_{\sim} \mid a,b \in \mathbb{N}\}$.

We can define the usual linear order on the integers in several ways. Your task, should you choose to accept it, is to ...

- 1. Give a formal definition of the linear order, let's call it $<_{\mathbb{Z}}$, on the integers. [5]
- **2.** Show that $<_{\mathbb{Z}}$ is indeed a linear order on \mathbb{Z} . You may assume that we know everything you might need to know about the natural numbers to execute your proof. [5]

^{*} Please submit your solutions, preferably as a single pdf, via Blackboard's Assignments module. If that fails, please submit them to the instructor on paper or via email to sbilaniuk@trentu.ca as soon as you can,