Mathematics 2200H - Mathematical Reasoning

TRENT UNIVERSITY, Fall 2025

Solutions to Assignment #7 The Linear Order on \mathbb{Z}

Due on Friday, 31 October.

Recall that a (strict) linear order on a set A, let's denote it by \triangleleft , is a binary relation satisfying the following conditions:

- 1. Irreflexivity: For all $a \in A$, it is not the case that $a \triangleleft a$.
- 2. Transitivity: For all $a, b, c \in A$, if $a \triangleleft b$ and $b \triangleleft c$, then $a \triangleleft c$.
- 3. Trichotomy: For all $a, b \in A$, exactly one of $a \triangleleft b$, a = b, or $b \triangleleft a$, is true.

Recall also that we defined the integers to be the set of equivalence classes of the equivalence relation \sim on $\mathbb{N} \times \mathbb{N} = \{(a,b) \mid a,b \in \mathbb{N}\}$ given by $(a,b) \sim (c,d) \iff a+d=b+c$. The equivalence class of (a,b) is then $[(a,b)]_{\sim} = \{(c,d) \in \mathbb{N} \times \mathbb{N} \mid (a,b) \sim (c,d)\}$ and the set of integers is $\mathbb{Z} = \{[(a,b)]_{\sim} \mid a,b \in \mathbb{N}\}$.

We can define the usual linear order on the integers in several ways. Your task, should you choose to accept it, is to ...

1. Give a formal definition of the linear order, let's call it $<_{\mathbb{Z}}$, on the integers. [5] SOLUTION. We define $<_{\mathbb{Z}}$ as follows:

$$[(a,b)]_{\sim} <_{\mathbb{Z}} [(c,d)]_{\sim} \iff a+d <_{\mathbb{N}} b+c$$

Intuitively, the equivalence classes $[(a,b)]_{\sim}$ and $[(c,d)]_{\sim}$ represent the differences a-b and c-d, so $a-b < c-d \iff a+d < b+c$.

We ought to check that $<_{\mathbb{Z}}$ is "well-defined", that is, the relation does not depend on the particular choice of representatives from each equivalence class. This means that given that $[(a,b)]_{\sim} = [(a',b')]_{\sim}$ and $[(c,d)]_{\sim} = [(c',d')]_{\sim}$, we need to check that

$$[(a,b)]_{\sim} <_{\mathbb{Z}} [(c,d)]_{\sim} \iff [(a',b')]_{\sim} <_{\mathbb{Z}} [(c',d')]_{\sim}.$$

Note that for the equivalence classes to be equal, we must have that $(a,b) \sim (a',b')$, *i.e.* a+b'=b+a', and $(c,d) \sim (c',d')$, *i.e.* c+d'=d+c'. Here we go, implicitly using various facts about addition and the linear order on \mathbb{N} :

$$[(a,b)]_{\sim} <_{\mathbb{Z}} [(c,d)]_{\sim} \iff a+d=b+c$$

$$\iff a+d+a'+b'+c'+d' <_{\mathbb{N}} b+c+a'+b'+c'+d'$$

$$\iff (a'+d')+(a+b')+(c'+d)<_{\mathbb{N}} (b'+c')+(b+a')+(c+d')$$

$$\iff a'+d'<_{\mathbb{N}} b'+c'$$

$$\iff [(a',b')]_{\sim} <_{\mathbb{Z}} [(c',d')]_{\sim}$$

Thus $<_{\mathbb{Z}}$ is well-defined.

2. Show that $\leq_{\mathbb{Z}}$ is indeed a linear order on \mathbb{Z} . You may assume that we know everything you might need to know about the natural numbers to execute your proof. [5]

Solution. We check that the three conditions for being a linear order are true of $<_{\mathbb{Z}}$.

- 1. $<_{\mathbb{Z}}$ is irreflexive. $[(a,b)]_{\sim} <_{\mathbb{Z}} [(a,b)]_{\sim}$ would require that $a+b<_{\mathbb{N}} b+a$, which is not true because a+b=b+a and $<_{\mathbb{N}}$ is irreflexive. Thus $<_{\mathbb{Z}}$ is irreflexive.
- 2. $<_{\mathbb{Z}}$ is transitive. Suppose $[(a,b)]_{\sim} <_{\mathbb{Z}} [(c,d)]_{\sim}$ and $[(c,d)]_{\sim} <_{\mathbb{Z}} [(e,f)]_{\sim}$, so $a+d <_{\mathbb{N}} b+c$ and $c+f <_{\mathbb{N}} d+e$. It follows that, using various properties of + and $<_{\mathbb{N}}$ on \mathbb{N} ,

$$(a+d) + (c+f) <_{\mathbb{N}} (b+c) + (d+e) \implies (a+f) + (d+c) <_{\mathbb{N}} (b+e) + (c+d)$$

 $\implies a+f <_{\mathbb{N}} b+e,$

and so, by definition, $[(a,b)]_{\sim} <_{\mathbb{Z}} [(e,f)]_{\sim}$. Thus $<_{\mathbb{Z}}$ is transitive.

3. $<_{\mathbb{Z}}$ satisfies trichotomy. Consider $[(a,b)]_{\sim}$, $[(c,d)]_{\sim} \in \mathbb{Z}$. Since $<_{\mathbb{N}}$ is a linear order, it satisfies trichotomy, so exactly one of $a+d <_{\mathbb{N}} b+c$, a+d=b+c, or $b+c <_{\mathbb{N}} a+d$ is true. By the definition of $<_{\mathbb{Z}}$, it follows that exactly one of $[(a,b)]_{\sim} <_{\mathbb{Z}} [(c,d)]_{\sim}$, $[(a,b)]_{\sim} = [(c,d)]_{\sim}$, or $[(c,d)]_{\sim} <_{\mathbb{Z}} [(a,b)]_{\sim}$ is true. Thus $<_{\mathbb{Z}}$ satisfies trichotomy.