Mathematics 2200H - Mathematical Reasoning

TRENT UNIVERSITY, Fall 2025

Assignment #6 The Linear Order on N

Due on Friday, 17 October.*

As was noted in class some time ago, a (strict) linear order on a set A, let's denote it by \triangleleft , is a binary relation satisfying the following conditions:

- 1. Irreflexivity: For all $a \in A$, it is not the case that $a \triangleleft a$.
- 2. Transitivity: For all $a, b, c \in A$, if $a \triangleleft b$ and $b \triangleleft c$, then $a \triangleleft c$.
- 3. Trichotomy: For all $a, b \in A$, exactly one of $a \triangleleft b$, a = b, or $b \triangleleft a$, is true.

We can define the usual linear order on the natural numbers is several ways. Here is perhaps the most common one:

DEFINITION. a < b for natural numbers a and b if and only if b = a + S(k) for some $k \in \mathbb{N}$.

This definition plays nicely with our construction of the natural numbers in set theory:

```
0 = \emptyset
1 = S(0) = \{0\}
2 = S(1) = \{0, 1\}
3 = S(2) = \{0, 1, 2\}
\vdots
n + 1 = S(n) = \{0, 1, 2, \dots, n\}
\vdots
```

where the successor function is defined by $S(x) = x \cup \{x\}$ for any set x. In particular, the following equivalence is left to you to prove.

- **1.** Show that for all $a, b \in \mathbb{N}$, a < b if and only if $a \in b$. [5]
- **2.** Show that < on \mathbb{N} is a linear order. [5]

^{*} Please submit your solutions, preferably as a single pdf, via Blackboard's Assignments module. If that fails, please submit them to the instructor on paper or via email to sbilaniuk@trentu.ca as soon as you can,