Mathematics 2200H - Mathematical Reasoning

TRENT UNIVERSITY, Fall 2025

Solutions to Assignment #6 The Linear Order on N

Due on Friday, 17 October.

As was noted in class some time ago, a (strict) linear order on a set A, let's denote it by \triangleleft , is a binary relation satisfying the following conditions:

- 1. Irreflexivity: For all $a \in A$, it is not the case that $a \triangleleft a$.
- 2. Transitivity: For all $a, b, c \in A$, if $a \triangleleft b$ and $b \triangleleft c$, then $a \triangleleft c$.
- 3. Trichotomy: For all $a, b \in A$, exactly one of $a \triangleleft b$, a = b, or $b \triangleleft a$, is true.

We can define the usual linear order on the natural numbers is several ways. Here is perhaps the most common one:

DEFINITION. a < b for natural numbers a and b if and only if b = a + S(k) for some $k \in \mathbb{N}$.

This definition plays nicely with our construction of the natural numbers in set theory:

```
0 = \emptyset
1 = S(0) = \{0\}
2 = S(1) = \{0, 1\}
3 = S(2) = \{0, 1, 2\}
\vdots
n + 1 = S(n) = \{0, 1, 2, \dots, n\}
\vdots
```

where the successor function is defined by $S(x) = x \cup \{x\}$ for any set x. In particular, the following equivalence is left to you to prove.

1. Show that for all $a, b \in \mathbb{N}$, a < b if and only if $a \in b$. [5]

SOLUTION. We will proceed by induction on b.

Base Step. (b=0) Observe that if $b=0=\emptyset$, then $b\neq S(a+k)=a+S(k)$, i.e. $a\not< b$, for every $a\in\mathbb{N}$ simply because b=0 is the only natural number which is not a successor, and also $a\notin\emptyset=b$ for every $a\in\mathbb{N}$. Thus a< b if and only if $a\in b$ when b=0, for all $a\in\mathbb{N}$.

Induction Hypothesis. (b = n) a < n if and only if $a \in n$ for all $a \in \mathbb{N}$.

Induction Step. $(b = n \to b = S(n))$ We need to show that $a < b = S(n) \iff a \in b = S(n)$.

[\Longrightarrow] Suppose a < b = S(n), i.e. b = S(n) = a + S(k) for some integer k. Then S(n) = a + S(k) = S(a+k), so n = a+k because S is 1–1. If k = 0, then $a = a+0 = n \in n \cup \{n\} = S(n) = b$. On the other hand, if $k \neq 0$, then k = S(m) for some integer m. In this case, n = a+k = a+S(m), i.e. a < n, so $a \in n$ by the induction hypothesis, and it follows that $a \in n \cup \{n\} = S(n) = b$.

[Suppose $a \in b = S(n) = n \cup \{n\}$. Then either a = n or $a \in n$. If a = n, then b = S(n) = S(n+0) = n+S(0) = a+S(0), so a < b. On the other hand, if $a \in n$, then a < n by the induction hypothesis, i.e. n = a + S(k) for some integer k, so b = S(n) = S(a + S(K)) = a + S(S(k)), i.e. a < b.

Thus, by mathematical induction, a < b if and only if $a \in b$ for all $a, b \in \mathbb{N}$.

2. Show that < on \mathbb{N} is a linear order. [5]

SOLUTION. We check the three conditions that < must satisfy to be a linear order.

- 1. We know that one of the consequences of the Axiom of Foundation is that $a \notin a$ for all sets a, and hence for all $a \in \mathbb{N}$. By question 1, it follows that $a \not< a$ for all $a \in \mathbb{N}$, so < is irreflexive.
- 2. Suppose a < b and b < c for some $a, b, c \in \mathbb{N}$. By definition, this means that b = a + S(k) and c = b + S(m) for some natural numbers k and m. Then c = b + S(m) = (a + S(k)) + S(m) = a + (S(k) + S(m)) = a + S(S(k) + m), so a < c by definition. Thus < is transitive.
- 3. We will use induction on $b \in \mathbb{N}$ to show that for all $a \in \mathbb{N}$, exactly one of a < b, a = b, or b < a must be true.

Base Step. (b=0) Since $b=0=\emptyset$, we cannot have $a \in b$, so $a \nleq b$ by **1**. If a=0, then a=b, and we cannot also have $b \lessdot a$ because this would mean that $b \in a=0=\emptyset$ by **1**. If $a \neq 0$, then $a \neq b=0$ immediately, and a=S(k) for some $k \in \mathbb{N}$, so a=0+a=0+S(k)=b+S(k), which means that $b \lessdot a$ by definition.

Induction Hypothesis. (b = n) For all $a \in \mathbb{N}$, exactly one of a < n, a = n, or n < a is true.

Induction Step. $(b = n \to b = S(n))$ We need to show that exactly one of a < S(n), a = S(n), or S(n) < a is true. By the induction hypothesis, exactly one of a < n, a = n, or n < a is true. There are three cases:

Case 1. If a = n, then a + S(0) = S(a + 0) = S(a) = S(n), so a < S(n) by definition. Case 2. If a < n, then n = a + S(k) for some k, but then S(n) = S(a + S(k)) = a + S(S(k)), so a < S(n) by definition.

Case 3. If n < a, then a = n + S(k) for some k by definition. In the subcase that k = 0, we have that a = n + S(0) = S(n + 0) = S(n). In the subcase that $k \neq 0$, we must have that k = S(m) for some m. Then a = n + S(k) = n + S(S(k)) = S(n + S(k)) = S(S(k) + N) = S(k) + S(N) = S(N) + S(N), so S(N) < N by definition.

It follows that exactly one of a < S(n), a = S(n), or S(n) < a is true.

Thus, by mathematical induction, exactly one of a < b, a = b, or b < a must be true for all $a, b \in \mathbb{N}$, *i.e.* < satisfies trichotomy.

Since it satisfies all of the necessary conditions, \langle is a linear order on \mathbb{N} .