Mathematics 2200H - Mathematical Reasoning

TRENT UNIVERSITY, Fall 2025

Assignment #3 Lengths

Due on Friday, 26 September.

Please read the handout A Minimal System of Propositional Logic before tackling this assignment.

1. Consider the formulas of our official system of propositional logic, \mathcal{L}_P , that do not have any instance of the connective \rightarrow . Determine, with proof, exactly what the possible lengths of such formulas are. [10]

NOTE. The length of a formula is its length as a string: the number of symbols of the language it contains, counting repetitions.

SOLUTION. A formula of our official system of propositional logic, \mathcal{L}_P , that does not have any instance of the connective \to is either atomic or built from an atomic formula with some finite number of applications of negation. We claim that the length of such a formula must be 3n+1, where $n \geq 0$ is the number of applications of negation used to build the formula, and we prove this by induction on n.

Base Step. (n = 0) If the number of applications of negation used to construct a formula is n = 0, and the formula does not use the connective \rightarrow , then the formula has no connectives. The only formulas of \mathcal{L}_P without connectives are the atomic formulas, which have length $1 = 3 \cdot 0 + 1 = 3n + 1$ as strings of symbols of the language.

Inductive Hypothesis. (n = k) If a formula α of \mathcal{L}_P has no instance of \to and was built using $k \ge 0$ applications of negation, then α has length 3k + 1.

Inductive Step. $(n=k\Rightarrow n=k+1)$ Suppose β is a formula which has no instance of \rightarrow and was built using n=k+1 applications of negations. Then β must be $(\neg \alpha)$ for some formula α which has no instance of \rightarrow and was built using k applications of negation. By the inductive hypothesis, α must have length 3k+1 and, since β has the three additional symbols (\neg, \neg, \neg) , it follows that β has length 3k+1+3=3(k+1)+1=3n+1, as required.

By mathematical induction, it follows that a formula of our official system of propositional logic, \mathcal{L}_P , that does not have any instance of the connective \to has length 3n+1, where n is the number of applications of negation used to build the formula.

NOTE 1. It should be pretty obvious, too, that if $n \ge 0$ and we want to build a formula of \mathcal{L}_P of length 3n + 1 and with no instance of \to , we can do so by starting with an atomic formula and negating it n times.

NOTE 2. In case you're paranoid, why does the above proof guarantee that there is no formula which has no instance of \rightarrow and which has a length that is not of the form 3n+1 for some $n \geq 0$?