Mathematics 2200H - Mathematical Reasoning

TRENT UNIVERSITY, Fall 2025

Assignment #11 Real Addition

Due on Friday, 28 November.*

Recall that we defined the real numbers to be the *schnitts* or *Dedekind cuts*. A schnitt is a subset $r \subseteq \mathbb{Q}$ satisfying

- i. $r \neq \emptyset$ and $r \neq \mathbb{Q}$;
- ii. if $p \in r$ and q < p for some $q \in \mathbb{Q}$, then $q \in r$ (r is "downward closed");
- iii. if $p \in r$, then there is some $q \in r$ with p < q (r has no largest element).

Officially, $\mathbb{R} = \{ r \subset \mathbb{Q} \mid r \text{ is a schnitt } \}$. We then proceeded to define addition on \mathbb{R} by:

$$r +_{\mathbb{R}} s = \left\{ p +_{\mathbb{Q}} q \mid p \in r \text{ and } q \in s \right\}$$

We verified in class that this is a schnitt, too.

1. Verify that the addition of real numbers (*i.e.* schnitts) is associative and commutative. [5] NOTE. You may assume that the rational numbers and addition of rational numbers have all the properties you need.

We also defined $0_{\mathbb{R}} = \{ p \in \mathbb{Q} \mid p < 0_{\mathbb{Q}} \}.$

2. Show that for every $r \in \mathbb{R}$, $r +_{\mathbb{R}} 0_{\mathbb{R}} = r$. [5]

^{*} Please submit your solutions, preferably as a single pdf, via Blackboard's Assignments module. If that fails, please submit them to the instructor on paper or via email to sbilaniuk@trentu.ca as soon as you can.