Mathematics 2200H - Mathematical Reasoning

TRENT UNIVERSITY, Fall 2025

Assignment #1 Imaginary Matrices

Due on Friday, 12 September.*

Before starting on this assignment, please read through the handout *Polyas Problem Solving Principles* and keep it in mind when working through problems **1–3**.

Recall that the complex numbers are basically the real numbers with a square root for -1, usually denoted by i, thrown in and then closed up under the usual arithmetic operations of addition and multiplication. A little more formally, the set of complex numbers is $\mathbb{C} = \{a+bi \mid a, b \in \mathbb{R}\}$, with + and \cdot defined by v(a+bi) + (c+di) = (a+c) + (b+d)i and $(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i$. Note that his definition of multiplication gives us $i^2 = (0+1i)^2 = -1 + 0i = -1$. We also have that $\mathbb{R} = \{a+bi \in \mathbb{C} \mid b=0\}$ is a subset of \mathbb{C} .

Let $\mathbf{M}_2(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$ be the set of 2×2 matrices with entries from the real numbers, and let $\mathbf{O}_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{I}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ be the 2×2 zero and identity matrices, respectively, in $\mathbf{M}_2(\mathbb{R})$.

- 1. Find a matrix $\mathbf{T} \in \mathbf{M}_2(\mathbb{R})$ such that $\mathbf{T}^2 = -\mathbf{I}_2$. [2]
- **2.** Explain why there is a copy of the complex numbers in $\mathbf{M}_2(\mathbb{R})$, with this copy using the addition and multiplication of matrices as its addition and multiplication. [3]

The next step beyond the complex numbers are the *quaternions*, usually denoted by \mathbb{H} . They were invented/discovered in 1843 by William Rowan Hamilton (1805-1865), who used them to do things we mostly do with cross-products nowadays. To make the quaternions, you throw three different square roots of -1 – usually denoted by i, j, and k – into the real numbers which have a non-commutative multiplication among themselves. To be precise, we have:

$$i^{2} = -1$$
 $j^{2} = -1$ $k^{2} = -1$
 $ij = k$ $jk = i$ $ki = j$
 $ji = -k$ $kj = -i$ $ik = -j$

Let $\mathbf{M}_4(\mathbb{R})$ be the set of 4×4 matrices with entries from thereal numbers, and let \mathbf{O}_4 and \mathbf{I}_4 be the 4×4 zero and identity matrices, respectively.

3. Find matrices $U, V, W \in M_4(\mathbb{R})$ such that:

$$\mathbf{U}^2 = -\mathbf{I}_4$$
 $\mathbf{V}^2 = -\mathbf{I}_4$ $\mathbf{W}^2 = -\mathbf{I}_4$ $\mathbf{U}\mathbf{V} = \mathbf{W}$ $\mathbf{V}\mathbf{W} = \mathbf{U}$ $\mathbf{W}\mathbf{U} = \mathbf{V}$ [3] $\mathbf{V}\mathbf{U} = -\mathbf{W}$ $\mathbf{W}\mathbf{V} = -\mathbf{U}$ $\mathbf{U}\mathbf{W} = -\mathbf{V}$

One could go on to use these matrices to show that there is a copy of the quaternions in $\mathbf{M}_4(\mathbb{R})$, but we'll save that as a possibility for another day. :-)

4. To what extent did your process in solving questions **1–3** follow the advice given in *Polyas Problem Solving Principles?* [2]

^{*} Please submit your solutions, preferably as a single pdf, via Blackboard's Assignments module. If that fails, please submit them to the instructor on paper or via email to sbilaniuk@trentu.ca as soon as you can,