
Mathematics 2200H – Mathematical Reasoning
Trent University, Fall 2025

Solutions to Assignment #1
Imaginary Matrices

Due on Friday, 12 September.

Before starting on this assignment, please read through the handout Polyas Problem
Solving Principles and keep it in mind when working through problems 1–3.

Recall that the complex numbers are basically the real numbers with a square root
for −1, usually denoted by i, thrown in and then closed up under the usual arithmetic
operations of addition and multiplication. A little more formally, the set of complex
numbers is C = { a + bi | a, b ∈ R }, with + and · defined by v(a+ bi)+(c+di) = (a+ c)+
(b+d)i and (a+bi)·(c+di) = (ac−bd)+(ad+bc)i. Note that his definition of multiplication
gives us i2 = (0 + 1i)2 = −1 + 0i = −1. We also have that R = { a + bi ∈ C | b = 0 } is a
subset of C.

Let M2(R) =

{[
a b
c d

] ∣∣∣∣ a, b, c, d ∈ R
}

be the set of 2 × 2 matrices with entries

from the real numbers, and let O2 =

[
0 0
0 0

]
and I2 =

[
1 0
0 1

]
be the 2 × 2 zero and

identity matrices, respectively, in M2(R).

1. Find a matrix T ∈M2(R) such that T2 = −I2. [2]

Solution 1. Mess around a bit. The simplest matrices that do the job put 0s on the

diagonal and a 1 and a −1 on the antidiagonal,

[
0 −1
1 0

]
and

[
0 1
−1 0

]
. These two

matrices are pretty easy to find by hit or miss; you can check at your leisure that both
satisfy T2 = −I2. �

Solution 2. Be general and algebraic. We try to solve the equation T2 = −I2, where

T =

[
a b
c d

]
, as generally as we can. This boils down to finding all the real numbers a, b,

c, and d such that

[
a b
c d

]2
=

[
a2 + bc ac + cd
ab + bd bc + d2

]
=

[
a2 + bc c(a + d)
b(a + d) d2 + bc

]
=

[
−1 0
0 −1

]
.

Looking at the entries, this means that we need to find all the solutions to the system of
equations a2 + bc = −1, c(a + d) = 0, b(a + d) = 0, and d2 + bc = −1.

Observe first that c(a+ d) = 0 when c = 0 or a+ d = 0, i.e. d = −a, and b(a+ d) = 0
when b = 0 or a + d = 0. Note that if a + d 6= 0, we must have b = c = 0. However, we
then have to have that a2 = d2 = −1, which is impossible for real numbers a and d. Thus
it must be the case that a + d = 0, i.e. that d = −a. This cuts us down to just finding
all the solutions to the equation a2 + bc = −1. (Why?) If you think about it, this means

that b can be any real number other than 0, and we get a solution by setting c = −1 + a2

b
,

which works no matter what real number a happens to be.

Thus a matrix T satisfying T2 = −I2 has the form T =

[
a b

−
(
1 + a2

)
/b −a

]
, where

a and b can be any real numbers, as long as b 6= 0. For example, in the two matrices in
Solution 1 above we have a = 0, with b = −1 and b = 1, respectively. �
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2. Explain why there is a copy of the complex numbers in M2(R), with this copy using
the addition and multiplication of matrices as its addition and multiplication. [3]

Solution. The copy is easy to identify via the correspondence a + bi⇐⇒ aI2 + bT. For
example, this corresponds 0 with 02, 1 with I2, and i with T. We only need to check that
the correspondence is maintained when using the appropriate addition and multiplication
on each side of the correspondence. (That is, using the addition and multiplication of
complex numbers on one side, and the addition and multiplication of 2×2 matrices on the
other.)

Suppose that a, b, c, and d are any real numbers. By the definition of the correspon-
dence, we have a + bi⇐⇒ aI2 + bT and c + di⇐⇒ cI2 + dT. Then

(a + bi) + (c + di) = a + bi + c + di = (a + c) + (b + d)i and

(aI2 + bT) + (cI2 + dT) = aI2 + cI2 + bT + dT = (a + c)I2 + (b + d)T,

and it is evident, by the definition of our correspondence, that (a + c) + (b + d)i ⇐⇒
(a + c)I2 + (b + d)T. Thus the correspondence is maintained when using addition in
the respective domains. Note that we implicitly used a lot of the algebraic properties of
the respective domains without further ado, including associativity, commutativity, and
distributivity of multiplication over addition.

Also,

(a + bi)(c + di) = ac + adi + bci + bdi2 = ac + adi + bci− bd

= (ac− bd) + (ad + bc)i and

(aI2 + bT) (cI2 + dT) = acI22 + adI2T + bcTI2 + bdT2

= acI2 + adT + bcT− bdI2

= (ac− bd)I2 + (ad + bc)T,

so the correspondence is also maintained when using the multiplicationin the respective
domains. Again, note that we implicitly used a lot of the algebraic properties of the
respective domains.

It follows from all of the above that the set { aI2 + bT | a, b ∈ R } ⊆M2(R) is a copy
of the complex numbers in M2(R) via the correspondence a + bi⇐⇒ aI2 + bT. �

The next step beyond the complex numbers are the quaternions, usually denoted
by H. They were invented/discovered in 1843 by William Rowan Hamilton (1805-1865),
who used them to do things we mostly do with cross-products nowadays. To make the
quaternions, you throw three different square roots of −1 – usually denoted by i, j, and k
– into the real numbers which have a non-commutative multiplication among themselves.
To be precise, we have:

i2 = −1 j2 = −1 k2 = −1
ij = k jk = i ki = j
ji = −k kj = −i ik = −j

Let M4(R) be the set of 4× 4 matrices with entries from thereal numbers, and let O4

and I4 be the 4× 4 zero and identity matrices, respectively.
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3. Find matrices U, V, W ∈M4(R) such that:

U2 = −I4 V2 = −I4 W2 = −I4
UV = W VW = U WU = V
VU = −W WV = −U UW = −V

[3]

Solution. The following matrices, among other possibilities, do the job:

U =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 V =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 W =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


These three matrices were found by hit or miss, with some inspiration drawn from the hit
or miss approach taken in Solution 1 to question 1. We leave it to the interested reader
to check that these matrices satisfy the given equations. A fully general solution to this
problem, along the lines of Solution 2 to question 1, is a lot harder to achieve because
there are so many variables. (3× 16 = 48 to start with . . . ) �

One could go on to use these matrices to show that there is a copy of the quaternions
in M4(R), but we’ll save that as a possibility for another day. :-)

4. To what extent did your process in solving questions 1–3 follow the advice given in
Polyas Problem Solving Principles? [2]

Solution. In answering each of questions 1–3, it was necessary to understand the prob-
lem, which is Polya’s first principle. (After all, if you don’t understand the question, how
do you know when you’ve answered it?)

As for Polya’s second and third principles, to devise a plan and then execute it, in
questions 1 and 3 I really had no plan except to tinker with matrices until I found some
that worked, which I did. In question 3 the tinkedotsring was to some degree guided
by the experience gained in answering question 1, but that wasn’t really a plan . . . In
question 2, after working out the correspondence, the plan was simply to demonstrate
that it was preserved under addition and multiplication in the two domains, which was a
pretty straightforward set calculations to execute.

Looking back, Polya’s fourth principle, in solving each question, was largely limited
to fixing typos and making small improvements to phrasing.

Overall, the process I used conformed in part, but only in part, to Polya’s advice.
The only solution where the process conformed more-or-less fully to Polya’s scheme was
for question 2. �
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