
The	Axioms	for Sets			
3 what we can do with them					
Arready Congred for the Zermen - Frankel Anioms so far:					
- "There is an empty set"					
- 3x4y (-yex)					
> "If x is a set, Then Ux=Ua= {y]a(y \in A a \in \alpha)} is a set"					
3. Comprehension Assom					
> "If x is a set } gly) is a formula with y free, then {y ∈x g(y) } is a set"					
Today					
The Zermelo-Fraenkel Amons (continued)					
> Let R= {x6U1-1x6x3}					
> Pair ser Amon: "If x 3 y are sets, men 12 y 3 is a set too" × a surprising.	1 powerful as	How			
- Paner set Ariam: "If x is a set, the S(x)= {xy \in x} is a set too"		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
- Amon of Tourdeston (or Regularity): "If x not empty, mere is some element yex					
-> Amon of Replacement: suppose x is a set & glyz) is a formula union defines	i a function w	with its domain	: n X -		
Then, 2 2 1 96 x 1 9 (4 2 3	a dan la	40.4			
> Axiom of Extensionally: "If x i y are sets, then x i y are equal exactly." > Vx Vy (x = y \ >> Vz (26x \ >> 26y))	when the hal	we the same ele	emenio		
> Axions of Infinity:					
> Let S be the following operation on sets:					
Six= 20 {2}					
Why is S(x) defined for all sets to given the other owners?					
of x is a set in then \$x.x } is a set (Pair)					
[2x, x] = [2x] by entensionality 3 is also a set					
> than {x, {x}} is a ser (Pair)					
oy Union, Utx, Ext 3 - 2U Ext so a set too					
> then w= 20, 5(0), 5(5(0)) } is a set					
it gets comparisoned quickly Aligns by the matural	numbers				
S(0)= Ø U 703 = 703 = 1 \ S(5)= 80 \ 2 \ 2 \ 2 \ 2 \ 3 \ 3 \ 3 \ 4 \ 2					
5(5(0))- 20 5 0 370 18 - 20 5 20 5 20 5 20 5 38 5 - 3					
Axiom of Choice: "If x is a set of non-empty sets, then there is a function of x->V2	Y Such that	for all use D.) € a"		
> Tarety need the full power of this	Total (may)	Jen, Tig	-3		
The Natural Numbers (N)					
N = 20,1,2,3, }					
0-8 successors of 0 # think of them as a collection of the predecessors					
1= 5(0) = 203					
$2=5.0)=\frac{5}{2}\circ_{11}\frac{3}{5}$					
3= \$(2) = \(\{ \cdot \), 1, 2 \(\right\}					
etc					

