
Mathematics 2200H – Mathematical Reasoning
Trent University, Fall 2024

Solutions to Assignment #8
The Quotient Numbers

Recall our definition of the rational numbers:

• We defined an equivalence relation ∼ on Z × (Z \ {0}) = { (a, b) | a, b ∈ Z and b 6= 0 } by

(a, b) ∼ (c, d) ⇐⇒ ad = bc. Informally, (a, b) ∼ (c, d) exactly when
a

b
=

c

d
.

• The equivalence class [(a, b)]∼ of a pair (a, b) ∈ Z×(Z \ {0}) consists of all the pairs equivalent
to (a, b), i.e. [(a, b)]∼ = { (c, d) ∈ Z× (Z \ {0}) | (a, b) ∼ (c, d) }. Informally, [(a, b)]∼ groups

all the pairs (c, d) such that
a

b
=

c

d
.

• The set of rational numbers is then officially Q =
{

[(a, b)]∼ | (a, b) ∈ BbbZ × (Z \ {0})
}

.

You can think of [(a, b)]∼ as being the official “value” of the fraction
a

b
(and every other

fraction equal to it).

Having defined Q, we also defined addition and, multiplication, and the linear order on the
rationals as follows.

• Officially, [(a, b)]∼+Q [(c, d)]∼ = [(ad + bc, bd)]∼. Informally, this is just the hopefully familiar

fact that
a

b
+

c

d
=

ad + bc

bd
.

• Officially, [(a, b)]∼ ·Q [(c, d)]∼ = [(ac, bd)]∼. Informally, this is just the hopefully familiar fact

that
a

b
· c
d

=
ac

bd
.

• Officially, [(a, b)]∼ <Q [(c, d)]∼ ⇐⇒ ad < bc, where we may assume that both b and d are

positive. Informally, this is just the fact that
a

b
<

c

d
exactly when cross-multiplying gives us

ad < bc, which is easy to check as long we are cross-multiplying by positive denominators.

1. Verify that the right distributive law holds in the rationals; that is, if r, s, t ∈ Q, then
r ·Q

(
s +Q t

)
=
(
r ·Q s

)
+Q

(
r ·Q t

)
. [3]

Solution. Suppose that r = [(a, b)]∼, s = [(c, d)]∼, and t = [(e, f)]∼. Then, using the properties
of multiplication and addition on the integers at the key steps, we have:

r ·Q
(
s +Q t

)
= [(a, b)]∼ ·Q

(
[(c, d)]∼ +Q [(e, f)]∼

)
= [(a, b)]∼ ·Q [(cf + de, df)]∼

= [(a(cf + de), bdf)]∼ = [(a(cf + de), bdf)]∼ ·Q 1Q

= [(a(cf + de), bdf)]∼ ·Q [(b, b)]∼ = [(a(cf + de)b, bdfb)]∼
= [(abcf + abde, bdbf)]∼ = [(acbf + bdae, bdbf)]∼ = [(ac, bd)]∼ +Q [(ae, bf)]∼

=
(
[(a, b)]∼ ·Q [(c, d)]∼

)
+Q

(
[(a, b)]∼ ·Q [(e, f)]∼

)
=
(
r ·Q s

)
+Q

(
r ·Q t

)
�

2. Show that if r, s, t ∈ Q and r <Q s, then r + t <Q s + t. [4]

Solution. Suppose that r = [(a, b)]∼, s = [(c, d)]∼, and t = [(e, f)]∼, and that r <Q s, i.e.
ad < bc. Then, using the properties of multiplication, addition, and the linear order on the
integers at the key steps, we have:

r +Q t = [(a, b)]∼ +Q [(e, f)]∼ = [(af + be, bf)]∼
<Q [(cf + de, df)]∼ = [(c, d)]∼ +Q [(e, f)]∼ = s +Q t

For the key step, note that ad < bc implies that adf2 < bcf2 (as f 6= 0 and so f2 > 0), which in turn
implies that adf2 + bdef < bcf2 + bdef , so (af + be)df = adf2 + bdef < cbf2 + bdef = (cf +de)bf ,
which means that [(af + be, bf)]∼ <Q [(cf + de, df)]∼ be the definition of <Q. �
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3. Show that the linear order <Q on the rational numbers has no endpoints; that is, there is no
smallest and no largest rational number in this linear order. [3]

Solution. Suppose that r = [(a, b)]∼ ∈ Q, where we may – and do – assume that b > 0. We
will show that there are both larger and smaller elements of Q in the linear order <Q. This
means, in particular, that r cannot be an endpoint for the linear order. We will show that
r − 1Q <Q r <Q r + 1Q, where 1Q = [(1, 1)]∼.

Recall that r − 1Q = [(a, b)]∼ +
(
− [(1, 1)]∼

)
= [(a, b)]∼ + [(−1, 1)]∼ = [(a1 + b(−1), b1)]∼ =

[(a− b, b)]∼. Using the fact that b > 0, and the properties of multiplication, addition, and the
linear order on the integers, it follows that a − b < a =⇒ (a − b)b < ab =⇒ r − 1Q =
[(a− b, b)]∼ < [(a, b)]∼ = r.

Similarly, r + 1Q = [(a, b)]∼ + [(1, 1)]∼ = [(a1 + b1, b1)]∼ = [(a + b, b)]∼. Using the fact that
b > 0, and the properties of multiplication, addition, and the linear order on the integers, it follows
that a < a + b =⇒ ab < (a + b)b =⇒ r = [(a, b)]∼ <Q [(a + b, b)]∼ = r + 1B. �
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