Mathematics 2200H – Mathematical Reasoning TRENT UNIVERSITY, Fall 2024

Solutions to Assignment #8 The Quotient Numbers

Recall our definition of the rational numbers:

- We defined an equivalence relation \sim on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) = \{(a, b) \mid a, b \in \mathbb{Z} \text{ and } b \neq 0\}$ by • The equivalence class $[(a,b)]_{\sim}$ of a pair $(a,b) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ consists of all the pairs equivalent
- to (a,b), *i.e.* $[(a,b)]_{\sim} = \{ (c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) \mid (a,b) \sim (c,d) \}$. Informally, $[(a,b)]_{\sim}$ groups all the pairs (c, d) such that $\frac{a}{b} = \frac{c}{d}$
- The set of rational numbers is then officially $\mathbb{Q} = \{ [(a,b)]_{\sim} \mid (a,b) \in BbbZ \times (\mathbb{Z} \setminus \{0\}) \}.$ You can think of $[(a,b)]_{\sim}$ as being the official "value" of the fraction $\frac{a}{b}$ (and every other fraction equal to it).

Having defined \mathbb{Q} , we also defined addition and, multiplication, and the linear order on the rationals as follows.

- Officially, $[(a, b)]_{\sim} + \mathbb{Q}[(c, d)]_{\sim} = [(ad + bc, bd)]_{\sim}$. Informally, this is just the hopefully familiar
- a controlling, [(a, b)]_∼ + Q[(c, a)]_∼ = [(aa + bc, ba)]_∼. Informally, this is just the hopefully familiar fact that a/b + c/d = ad + bc/bd.
 Officially, [(a, b)]_∼ · Q [(c, d)]_∼ = [(ac, bd)]_∼. Informally, this is just the hopefully familiar fact that a/b + c/d = ac/bd.
 Officially, [(a, b)]_∼ < Q [(c, d)]_∼ ⇔ ad < bc, where we may assume that both b and d are a c
- positive. Informally, this is just the fact that $\frac{a}{b} < \frac{c}{d}$ exactly when cross-multiplying gives us ad < bc, which is easy to check as long we are cross-multiplying by positive denominators.
- 1. Verify that the right distributive law holds in the rationals; that is, if $r, s, t \in \mathbb{Q}$, then $r \cdot_{\mathbb{O}} (s +_{\mathbb{O}} t) = (r \cdot_{\mathbb{O}} s) +_{\mathbb{O}} (r \cdot_{\mathbb{O}} t).$ [3]

SOLUTION. Suppose that $r = [(a, b)]_{\alpha}$, $s = [(c, d)]_{\alpha}$, and $t = [(e, f)]_{\alpha}$. Then, using the properties of multiplication and addition on the integers at the key steps, we have:

$$\begin{aligned} r \cdot_{\mathbb{Q}} \left(s +_{\mathbb{Q}} t \right) &= \left[(a,b) \right]_{\sim} \cdot_{\mathbb{Q}} \left(\left[(c,d) \right]_{\sim} +_{\mathbb{Q}} \left[(e,f) \right]_{\sim} \right) = \left[(a,b) \right]_{\sim} \cdot_{\mathbb{Q}} \left[(cf + de, df) \right]_{\sim} \\ &= \left[(a(cf + de), bdf) \right]_{\sim} = \left[(a(cf + de), bdf) \right]_{\sim} \cdot_{\mathbb{Q}} 1_{\mathbb{Q}} \\ &= \left[(a(cf + de), bdf) \right]_{\sim} \cdot_{\mathbb{Q}} \left[(b,b) \right]_{\sim} = \left[(a(cf + de)b, bdfb) \right]_{\sim} \\ &= \left[(abcf + abde, bdbf) \right]_{\sim} = \left[(acbf + bdae, bdbf) \right]_{\sim} = \left[(ac, bd) \right]_{\sim} +_{\mathbb{Q}} \left[(ae, bf) \right]_{\sim} \\ &= \left(\left[(a,b) \right]_{\sim} \cdot_{\mathbb{Q}} \left[(c,d) \right]_{\sim} \right) +_{\mathbb{Q}} \left(\left[(a,b) \right]_{\sim} \cdot_{\mathbb{Q}} \left[(e,f) \right]_{\sim} \right) = \left(r \cdot_{\mathbb{Q}} s \right) +_{\mathbb{Q}} \left(r \cdot_{\mathbb{Q}} t \right) \quad \Box \end{aligned}$$

2. Show that if $r, s, t \in \mathbb{Q}$ and $r <_{\mathbb{Q}} s$, then $r + t <_{\mathbb{Q}} s + t$. [4]

SOLUTION. Suppose that $r = [(a,b)]_{\sim}$, $s = [(c,d)]_{\sim}$, and $t = [(e,f)]_{\sim}$, and that $r <_{\mathbb{Q}} s$, *i.e.* ad < bc. Then, using the properties of multiplication, addition, and the linear order on the integers at the key steps, we have:

$$r +_{\mathbb{Q}} t = [(a,b)]_{\sim} +_{\mathbb{Q}} [(e,f)]_{\sim} = [(af+be,bf)]_{\sim}$$
$$<_{\mathbb{Q}} [(cf+de,df)]_{\sim} = [(c,d)]_{\sim} +_{\mathbb{Q}} [(e,f)]_{\sim} = s +_{\mathbb{Q}} t$$

For the key step, note that ad < bc implies that $adf^2 < bcf^2$ (as $f \neq 0$ and so $f^2 > 0$), which in turn implies that $adf^2 + bdef < bcf^2 + bdef$, so $(af + be)df = adf^2 + bdef < cbf^2 + bdef = (cf + de)bf$, which means that $[(af + be, bf)]_{\sim} <_{\mathbb{Q}} [(cf + de, df)]_{\sim}$ be the definition of $<_{\mathbb{Q}}$.

3. Show that the linear order $<_{\mathbb{Q}}$ on the rational numbers has no endpoints; that is, there is no smallest and no largest rational number in this linear order. [3]

SOLUTION. Suppose that $r = [(a, b)]_{\sim} \in \mathbb{Q}$, where we may – and do – assume that b > 0. We will show that there are both larger and smaller elements of \mathbb{Q} in the linear order $\langle_{\mathbb{Q}}$. This means, in particular, that r cannot be an endpoint for the linear order. We will show that $r - 1_{\mathbb{Q}} <_{\mathbb{Q}} r <_{\mathbb{Q}} r + 1_{\mathbb{Q}}$, where $1_{\mathbb{Q}} = [(1, 1)]_{\sim}$.

Recall that $r - 1_{\mathbb{Q}} = [(a,b)]_{\sim} + (-[(1,1)]_{\sim}) = [(a,b)]_{\sim} + [(-1,1)]_{\sim} = [(a1+b(-1),b1)]_{\sim} = [(a-b,b)]_{\sim}$. Using the fact that b > 0, and the properties of multiplication, addition, and the linear order on the integers, it follows that $a - b < a \implies (a-b)b < ab \implies r - 1_{\mathbb{Q}} = [(a-b,b)]_{\sim} < [(a,b)]_{\sim} = r$.

Similarly, $r + 1_{\mathbb{Q}} = [(a,b)]_{\sim} + [(1,1)]_{\sim} = [(a1+b1,b1)]_{\sim} = [(a+b,b)]_{\sim}$. Using the fact that b > 0, and the properties of multiplication, addition, and the linear order on the integers, it follows that $a < a + b \implies ab < (a+b)b \implies r = [(a,b)]_{\sim} <_{\mathbb{Q}} [(a+b,b)]_{\sim} = r + 1_{\mathbb{B}}$.