
Mathematics 2200H – Mathematical Reasoning
Trent University, Fall 2024

Solutions to Assignment #5
Exponentiation on NNN

Recall that addition of natural numbers is defined recursively using the successor
function as follows:

• For all n ∈ N, n + 0 = n.
• For all n, k ∈ N, if n + k has been defined, then n + S(k) = S(n + k).

Similarly, multiplication of natural numbers is defined recursively using addition and the
successor function as follows:

• For all n ∈ N, n · 0 = 0.
• For all n, k ∈ N, if n · k has been defined, then n · S(k) = (n · k) + n.

In what follows, you may assume that both addition and multiplication of real numbers
have all the familiar algebraic properties, including the cancellation and distributive laws.

1. Give a recursive definition of exponentiation of natural numbers. It should satisfy the
convention that 00 = 1. [2]

Solution. Here we go; keep in mind that 1 is shorthand for S(0).

• For all n ∈ N, n0 = 1.
• For all n, k ∈ N, if nk has been defined, then nS(k) =

(
nk

)
· n.

Note that 00 = 1 by the first part of the definition and that 0m = 0 for all m > 0 by
the second part of the definition. �

2. Use induction to show that for all a, b, c ∈ N,
(
ab
)c

= ab·c. [6]

Solution. We will proceed by induction on c:

Base Step. (c = 0) For all a, b ∈ N,
(
ab
)0

= 1 = a0 = ab·0, by the defintion of exponentia-
tion and since b · 0 = 0 by the definition of multiplication.

Induction Hypothesis. (c = k) Assume that for all a, b ∈ N and some k ∈ n,
(
ab
)c

k = ab·k

Inductive Step. (c = k → c = S(k)) For all a, b ∈ N,(
ab
)S(k)

=
((

ab
)k) · (ab) =

(
ab·k

)
·
(
ab
)

= a(b·k)+b = ab·S(k),

as desired, except for justifying the step
(
ab·k

)
·
(
ab
)

= a(b·k)+b. This requires knowing

that (de) ·
(
df

)
= de+f for natural numbers d, e, and f . We prove this fact by induction

on f :

Base Step. (f = 0) For all d, e ∈ N, (de) ·
(
d0
)

= (de) · 1 = de = de+0 by the
definition of exponentiation and the properties of multiplication and addition.

Induction Hypothesis. (f = k) Assume that for all d, e ∈ N and some f ∈ N,
(de) ·

(
df

)
= de+f .
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Inductive Step. (f = k → f = S(k)) For all d, a ∈ N,

(de) ·
(
dS(f)

)
= (de) ·

((
df

)
· d

)
=

(
(de) ·

(
df

))
· d =

(
de+f

)
· d = dS(e+f) = de+S(f),

using assorted properties of addition and multiplication as well as definitions and
the Inductive Hypothesis.

Thus, by mathematical induction, (de) ·
(
df

)
= de+f for all natural numbers

d, e, and f . �

Hence, by mathematical induction – and lots of it! –
(
ab
)c

= ab·c for all natural
numbers a, b, and c. �

3. Show that exponentiation of natural numbers is not always commutative. [1]

Solution. One small counterexample would be 12 = 1 6= 2 = 21.
Of course, if we’re paranoid, we really ought to check that 12 = 1 and 21 = 2. Recall

that 1 is technically shorthand for S(0) and 2 is technically shorthand for S(1) = s (S(0)).

12 = 1S(1) = 11 · 1 = 11 = 1S(0) = 10 · 1 = 1 · 1 = 1 · S(0) = 1 · 0 + 1 = 0 + 1 = 1

21 = 2S(0) = 20 · 2 = 1 · 2 = 1 · S(1) = 1 · 1 + 1 = 1 · S(0) + 1 = (1 · 0 + 1) + 1

= (0 + 1) + 1 = 1 + 1 = 1 + S(0) = S(1 + 0) = S(1) = 2

For the truly paranoid, how do we know that 1 6= 2? :-) �

4. Is exponentiation of natural numbers always associative or not? Prove that it is or
give a counterexample. [1]

Solution. Expoentiation of natural numbers is not associative most of the time. For

example,
(
22
)3

= 26 = 64 6= 512 = 29 = 2(23). We’ll leave the details for the paranoid to
the paranoid . . . :-) �
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