Mathematics 2200H – Mathematical Reasoning TRENT UNIVERSITY, Fall 2024 Solutions to Assignment #4 A Bit of Algebra via Set Theory and Induction

1. Use the Zermelo-Fraenkel axioms of set theory to show that the successor function, $S(x) = x \cup \{x\}$ is 1–1, *i.e.* that if S(x) = S(y), then x = y. [4]

SOLUTION. Suppose that we have S(x) = S(y) for some sets x and y. By definition, this means that $x \cup \{x\} = S(x) = S(y) = y \cup \{y\}$. It follows that $x \in y \cup \{y\}$, and so $x \in y$ or $x \in \{y\}$.

In the former case, that $x \in y$, we would have to have $x \neq y$ because, as was shown in class, the Axiom of Fondation implies that no set can be an element of itself. However, $y \in x \cup \{x\}$, too, and if $x \neq y$, we would have to have $y \in x$, too. By question **2** on Assignment #3, it isn't possible to have both $x \in y$ and $y \in x$, so the former case cannot be true.

Thus the latter case, that $x \in \{y\}$, must be true, which implies that x = y.

2. Use induction to show that addition on the natural numbers satisfies the *Right Cancellation Law*: for all $a, b, n \in \mathbb{N}$, if a + n = b + n, then a = b. [5]

Hint: $\mathbf{1}$ is the key to $\mathbf{2}$.

SOLUTION. We will show that a + n = b + n implies that a = b, for all $a, b, n \in \mathbb{N}$, by induction on n.

Base Step. (n = 0) For all $a, b \in \mathbb{N}$, if a + 0 = b + 0, then we have a = a + 0 = b + 0 = b by the definition of addition, so a = b.

Inductive Hypothesis. Assume that a + n = b + n implies that a = b, for all $a, b, \in \mathbb{N}$ and some $n \in \mathbb{N}$.

Inductive Step. $(n \Rightarrow S(n))$ We need to show that if $a, b, \in \mathbb{N}$ and a + S(n) = b + S(n), then a = b. Observe that if $a, b, \in \mathbb{N}$ and a + S(n) = b + S(n), then S(a+n) = a + S(n) = b + S(n) = S(b+n) by the definition of addition. By question **1**, the successor function is 1–1, so a + n = b + n, from which it follows that a = b by the Inductive Hypothesis.

Thus, by induction, the addition on the natural numbers satisfies the Right Cancellation Law. \blacksquare

3. What can you deduce from the Right Cancellation Law for addition if you also know that addition on the natural numbers is commutative? [1]

SOLUTION. If we know that addition on the natural numbers is commutative, *i.e.* a + b = b + a for all $a, b \in \mathbb{N}$, then we can deduce the *Left Cancellation Law* for addition, that for all $a, b, n \in \mathbb{N}$, if n + a = n + b, then a = b, from the Right Cancellation Law. (The details are left to the reader. :-)