Mathematics 2200H – Mathematical Reasoning TRENT UNIVERSITY, Fall 2024 Solutions to Assignment #2 Propositional Logic

All references are to the pretty minimal system of propositional logic described in class, and also in the handout A Minimal System of Propositional Logic – The Short Form.

1. Determine the possible lengths, as sequences of symbols, of (official) formulas of this system. [4]

SOLUTION. Recall the formation rules for official formulas of our language for propositional logic:

- a. Every atomic formula is a formula.
- b. If α is a formula, then $(\neg \alpha)$ is a formula.
- c. If α and β are formulas, then $(\alpha \rightarrow \beta)$ is a formula.
- d. A string of symbols of \mathcal{L}_P is a formula only if it is obtained can be built from the symbols of \mathcal{L}_P by finitely many applications of rules a, b, and c.

If these rules apply, every integer length $n \ge 1$ is possible, except for n = 2, n = 3, and n = 6.

- n = 1. Every atomic formula is a single symbol, so there are formulas of length 1.
- n = 2. The only way to make formulas longer than atomic formulas is to either negate an existing formula, which adds 3 symbols to an existing total of at least 1 symbol for a total of at least 4, or to make an implication between two existing formulas, which adds 3 symbols to an existing total of at least 2 (*i.e.* at least 1 for each existing formula) for a total of at least 5. Thus no formula can have only two symbols.
- n = 3. Ditto, except that no formula can have only three symbols.
- n = 4. The negation of any atomic formula, e.g. $(\neg A_7)$, has 4 symbols.
- n = 5. An implication between any two atomic formulas, e.g. $(A_3 \rightarrow A_{16})$, has 5 symbols.
- n = 6. Suppose φ was a formula with exactly 6 symbols. It would then have to be either a negation $(\neg\beta)$ of some formula β that had three symbols, which is impossible, or an implication $(\gamma \rightarrow \delta)$ between two formulas γ and δ which had three symbols between them, meaning that one of them had two symbols, which is impossible. Thus there can be no formula with exactly 6 symbols.
- n = 7. Here is an example of a formula with 7 symbols: $(\neg (\neg A_7))$.
- n = 8. Here is an example of a formula with 8 symbols: $(\neg (A_3 \rightarrow A_{16}))$.
- n = 9. Here is an example of a formula with 9 symbols: $(A_5 \rightarrow (A_3 \rightarrow A_{16}))$.

- n = 3k + 1. (k > 2) Negate a formula with 7 symbols k 2 times to get a formula with 3(k-2) + 7 = 3k + 1 symbols.
- n = 3k + 2. (k > 2) Negate a formula with 8 symbols k 2 times to get a formula with 3(k-2) + 8 = 3k + 2 symbols.
- n = 3k + 3. (k > 2) Negate a formula with 9 symbols k 2 times to get a formula with 3(k-2) + 9 = 3k + 3 symbols.

It follows that official formulas of our system of proposition logic can have any integer length $n \ge 1$, except for n = 2, n = 3, and n = 6.

2. Use a truth table to verify that whenever the formulas $(\alpha \to (\beta \to \gamma))$ and β are both true, then the formula $(\alpha \to \gamma)$ is also true. [2]

SOLUTION. Here is the truth table:

α	β	γ	$(\alpha \to (\beta \to \gamma))$	$(\alpha \rightarrow \gamma)$
T	T	T	T	T
T	T	F	F	F
T	F	T	T	T
T	F	F	T	F
F	T	T	T	T
F	T	F	T	T
F	F	T	T	T
F	F	F	T	T

Note $(\alpha \to \gamma)$ is true in every line of the truth table in which both $(\alpha \to (\beta \to \gamma))$ and β are true, as desired.

3. Use a deduction to verify that whenever the formulas $(\alpha \to (\beta \to \gamma))$ and β are both true, then the formula $(\alpha \to \gamma)$ is also true. [4]

SOLUTION. Here is a deduction using the premisses $(\alpha \to (\beta \to \gamma))$ and β which has $(\alpha \to \gamma)$ as its conclusion.

1. $((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$	A2
2. $(\alpha \to (\beta \to \gamma))$	Premiss
3. $((\alpha \to \beta) \to (\alpha \to \gamma))$	$1,2 { m MP}$
4. $(\beta \to (\alpha \to \beta))$	A1
5. β	Premiss
6. $(\alpha \rightarrow \beta)$	$4,5 { m MP}$
7. $(\alpha \rightarrow \gamma)$	$3,6 { m MP}$

That's that!