Mathematics 2200H – Mathematical Reasoning TRENT UNIVERSITY, Fall 2024

Assignment #11 Open or Closed? Due on Friday, 29 November.*

Here are two definitions of *open* and *closed* for subsets of \mathbb{R} :

DEFINITION 1. $A \subseteq \mathbb{R}$ us said to be *open* if for every $a \in A$ there is an $\varepsilon > 0$ such that $(a - \varepsilon, a + \varepsilon) \subseteq A$. $B \subseteq \mathbb{R}$ is said to be *closed* if $\mathbb{R} \setminus B$ is open.

DEFINITION 2. $B \subseteq \mathbb{R}$ is *closed* if for every sequence $\{b_n\}$ such that each $b_n \in B$ that has a limit $\lim_{n \to \infty} b_n = b$, we also have $b \in B$. $A \subseteq \mathbb{R}$ is said to be *open* if $\mathbb{R} \setminus A$ is closed.

The first definition is more common, with the second then becoming a theorem that usually gets proved fairly early because of its utility.

1. Show that the two definitions of open and closed for subsets of \mathbb{R} are equivalent. [10]

NOTE. Not every subset of \mathbb{R} is open or closed. For a cheap example, an interval such as (0,1] which contains one of its endpoints, but not the other, is neither open nor closed.

Scumbag topologist "opens" a store.

^{*} Please submit your solutions, preferably as a single pdf, via Blackboard's Assignments module. If that fails, please submit them to the instructor on paper or via email to sbilaniuk@trentu.ca as soon as you can.