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Chapter 1

Introduction and notation

1.1 Basic sets

Exercises — 1.1

1. Each of the quantities indexing the rows of the following table is in one

or more of the sets which index the columns. Place a check mark in a

table entry if the quantity is in the set.

N Z Q R C

17

π

22/7

−6

e0

1 + i
√

3

i2

1
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2. Write the set Z of integers using a singly infinite listing.

3. Identify each as rational or irrational.

(a) 5021.2121212121 . . .

(b) 0.2340000000 . . .

(c) 12.31331133311133331111 . . .

(d) π

(e) 2.987654321987654321987654321 . . .

4. The “see and say” sequence is produced by first writing a 1, then it-

erating the following procedure: look at the previous entry and say

how many entries there are of each integer and write down what you

just said. The first several terms of the “see and say” sequence are

1, 11, 21, 1112, 3112, 211213, 312213, 212223, . . .. Comment on the ra-

tionality (or irrationality) of the number whose decimal digits are ob-

tained by concatenating the “see and say” sequence.

0.1112111123112211213...
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5. Give a description of the set of rational numbers whose decimal ex-

pansions terminate. (Alternatively, you may think of their decimal

expansions ending in an infinitely-long string of zeros.)

6. Find the first 20 decimal places of π, 3/7,
√

2, 2/5, 16/17,
√

3, 1/2 and

42/100. Classify each of these quantity’s decimal expansion as: termi-

nating, having a repeating pattern, or showing no discernible pattern.
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7. Consider the process of long division. Does this algorithm give any in-

sight as to why rational numbers have terminating or repeating decimal

expansions? Explain.

8. Give an argument as to why the product of two rational numbers is

again a rational.

9. Perform the following computations with complex numbers

(a) (4 + 3i)− (3 + 2i)

(b) (1 + i) + (1− i)

(c) (1 + i) · (1− i)

(d) (2− 3i) · (3− 2i)

10. The conjugate of a complex number is denoted with a superscript star,

and is formed by negating the imaginary part. Thus if z = 3 + 4i then

the conjugate of z is z∗ = 3 − 4i. Give an argument as to why the

product of a complex number and its conjugate is a real quantity. (I.e.

the imaginary part of z · z∗ is necessarily 0, no matter what complex

number is used for z.)
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1.2 Definitions: Prime numbers

Exercises — 1.2

1. Find the prime factorizations of the following integers.

(a) 105

(b) 414

(c) 168

(d) 1612

(e) 9177

2. Use the sieve of Eratosthenes to find all prime numbers up to 100.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

3. What would be the largest prime one would sieve with in order to find

all primes up to 400?
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4. Characterize the prime factorizations of numbers that are perfect squares.

5. Complete the following table which is related to the conjecture that

whenever p is a prime number, 2p − 1 is also a prime.

p 2p − 1 prime? factors
2 3 yes 1 and 3
3 7 yes 1 and 7
5 31 yes
7 127
11

6. Find a counterexample for the conjecture that x2−31x+257 evaluates

to a prime number whenever x is a natural number.

7. Use the second definition of “prime” to see that 6 is not a prime.

In other words, find two numbers (the a and b that appear in the

definition) such that 6 is not a factor of either, but is a factor of their

product.

8. Use the second definition of “prime” to show that 35 is not a prime.
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9. A famous conjecture that is thought to be true (but for which no proof

is known) is the Twin Prime conjecture. A pair of primes is said to be

twin if they differ by 2. For example, 11 and 13 are twin primes, as

are 431 and 433. The Twin Prime conjecture states that there are an

infinite number of such twins. Try to come up with an argument as to

why 3, 5 and 7 are the only prime triplets.

10. Another famous conjecture, also thought to be true – but as yet un-

proved, is Goldbach’s conjecture. Goldbach’s conjecture states that

every even number greater than 4 is the sum of two odd primes. There

is a function g(n), known as the Goldbach function, defined on the pos-

itive integers, that gives the number of different ways to write a given

number as the sum of two odd primes. For example g(10) = 2 since

10 = 5 + 5 = 7 + 3. Thus another version of Goldbach’s conjecture is

that g(n) is positive whenever n is an even number greater than 4.

Graph g(n) for 6 ≤ n ≤ 20.
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1.3 More scary notation

Exercises — 1.3

1. How many quantifiers (and what sorts) are in the following sentence?

“Everybody has some friend that thinks they know everything about

a sport.”

2. The sentence “Every metallic element is a solid at room temperature.”

is false. Why?

3. The sentence “For every pair of (distinct) real numbers there is another

real number between them.” is true. Why?

4. Write your own sentences containing four quantifiers. One sentence in

which the quantifiers appear (∀∃∀∃) and another in which they appear

(∃∀∃∀).
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1.4 Definitions of elementary number theory

Exercises — 1.4

1. An integer n is doubly-even if it is even, and the integer m guaranteed

to exist because n is even is itself even. Is 0 doubly-even? What are

the first 3 positive, doubly-even integers?

2. Dividing an integer by two has an interesting interpretation when using

binary notation: simply shift the digits to the right. Thus, 22 = 101102

when divided by two gives 10112 which is 8 + 2 + 1 = 11. How can you

recognize a doubly-even integer from its binary representation?

3. The octal representation of an integer uses powers of 8 in place notation.

The digits of an octal number run from 0 to 7, one never sees 8’s or 9’s.

How would you represent 8 and 9 as octal numbers? What octal number

comes immediately after 7778? What (decimal) number is 7778?
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4. One method of converting from decimal to some other base is called

repeated division. One divides the number by the base and records

the remainder – one then divides the quotient obtained by the base

and records the remainder. Continue dividing the successive quotients

by the base until the quotient is smaller than the base. Convert 3267

to base-7 using repeated division. Check your answer by using the

meaning of base-7 place notation. (For example 543217 means 5 · 74 +

4 · 73 + 3 · 72 + 2 · 71 + 1 · 70.)

5. State a theorem about the octal representation of even numbers.

6. In hexadecimal (base-16) notation one needs 16 “digits,” the ordinary

digits are used for 0 through 9, and the letters A through F are used to

give single symbols for 10 through 15. The first 32 natural number in

hexadecimal are: 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15,16,

17,18,19,1A, 1B,1C,1D,1E,1F,20.

Write the next 10 hexadecimal numbers after AB.

Write the next 10 hexadecimal numbers after FA.
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7. For conversion between the three bases used most often in Computer

Science we can take binary as the “standard” base and convert using a

table look-up. Each octal digit will correspond to a binary triple, and

each hexadecimal digit will correspond to a 4-tuple of binary numbers.

Complete the following tables. (As a check, the 4-tuple next to A in

the table for hexadecimal should be 1010 – which is nice since A is

really 10 so if you read that as “ten-ten” it is a good aid to memory.)

octal binary

0 000

1 001

2

3

4

5

6

7

hexadecimal binary

0 0000

1 0001

2 0010

3

4

5

6

7

8

9

A

B

C

D

E

F
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8. Use the tables from the previous problem to make the following con-

versions.

(a) Convert 7578 to binary.

(b) Convert 10078 to hexadecimal.

(c) Convert 1001010101102 to octal.

(d) Convert 1111101000110101 to hexadecimal.

(e) Convert FEED16 to binary.

(f) Convert FFFFFF16 to octal.

9. It is a well known fact that if a number is divisible by 3, then 3 divides

the sum of the (decimal) digits of that number. Is this result true in

base 7? Do you think this result is true in any base?

10. Suppose that 340 pounds of sand must be placed into bags having a

50 pound capacity. Write an expression using either floor or ceiling

notation for the number of bags required.

11. True or false?

⌊n
d

⌋
<
⌈n
d

⌉
for all integers n and d > 0. Support your claim.
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12. What is the value of dπe2 − dπ2e?

13. Assuming the symbols n,d,q and r have meanings as in the quotient-

remainder theorem (see page 29 of GIAM). Write expressions for q and

r, in terms of n and d using floor and/or ceiling notation.

14. Calculate the following quantities:

(a) 3 mod 5

(b) 37 mod 7

(c) 1000001 mod 100000

(d) 6 div 6

(e) 7 div 6

(f) 1000001 div 2
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15. Calculate the following binomial coefficients:

(a)
(
3
0

)
(b)

(
7
7

)
(c)

(
13
5

)
(d)

(
13
8

)
(e)

(
52
7

)
16. An ice cream shop sells the following flavors: chocolate, vanilla, straw-

berry, coffee, butter pecan, mint chocolate chip and raspberry. How

many different bowls of ice cream – with three scoops – can they make?
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1.5 Some algorithms of elementary number

theory

Exercises — 1.5

1. Trace through the division algorithm with inputs n = 27 and d = 5,

each time an assignment statement is encountered write it out. How

many assignments are involved in this particular computation?

2. Find the gcd’s and lcm’s of the following pairs of numbers.

a b gcd(a, b) lcm(a, b)

110 273

105 42

168 189
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3. Formulate a description of the gcd of two numbers in terms of their

prime factorizations in the general case (when the factorizations may

include powers of the primes involved).

4. Trace through the Euclidean algorithm with inputs a = 3731 and

b = 2730, each time the assignment statement that calls the division

algorithm is encountered write out the expression a = qb + r. (With

the actual values involved !)
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1.6 Rational and irrational numbers

Exercises — 1.6

1. Rational Approximation is a field of mathematics that has received

much study. The main idea is to find rational numbers that are very

good approximations to given irrationals. For example, 22/7 is a well-

known rational approximation to π. Find good rational approximations

to
√

2,
√

3,
√

5 and e.

2. The theory of base-n notation that we looked at in the sub-section

on base-n can be extended to deal with real and rational numbers

by introducing a decimal point (which should probably be re-named

in accordance with the base) and adding digits to the right of it. For

instance 1.1011 is binary notation for 1·20+1·2−1+0·2−2+1·2−3+1·2−4

or 1 +
1

2
+

1

8
+

1

16
= 1

11

16
.

Consider the binary number .1010010001000010000010000001 . . ., is this

number rational or irrational? Why?
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3. If a number x is even, it’s easy to show that its square x2 is even.

The lemma that went unproved in this section asks us to start with a

square (x2) that is even and deduce that the unsquared number (x) is

even. Perform some numerical experimentation to check whether this

assertion is reasonable. Can you give an argument that would prove

it?

4. The proof that
√

2 is irrational can be generalized to show that
√
p is

irrational for every prime number p. What statement would be equiva-

lent to the lemma about the parity of x and x2 in such a generalization?

5. Write a proof that
√

3 is irrational.
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1.7 Relations

Exercises — 1.7

1. Consider the numbers from 1 to 10. Give the set of pairs of these

numbers that corresponds to the divisibility relation.

2. The domain of a function (or binary relation) is the set of numbers

appearing in the first coordinate. The range of a function (or binary

relation) is the set of numbers appearing in the second coordinate.

Consider the set {0, 1, 2, 3, 4, 5, 6} and the function f(x) = x2 (mod 7).

Express this function as a relation by explicitly writing out the set of

ordered pairs it contains. What is the range of this function?



20 CHAPTER 1. INTRODUCTION AND NOTATION

3. What relation on the numbers from 1 to 10 does the following set of

ordered pairs represent?

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10),

(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10),

(3, 3), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (3, 10),

(4, 4), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (4, 10),

(5, 5), (5, 6), (5, 7), (5, 8), (5, 9), (5, 10),

(6, 6), (6, 7), (6, 8), (6, 9), (6, 10),

(7, 7), (7, 8), (7, 9), (7, 10),

(8, 8), (8, 9), (8, 10),

(9, 9), (9, 10),

(10, 10)}
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4. Draw a five-pointed star, label all 10 points. There are 40 triples of

these labels that satisfy the betweenness relation. List them.
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5. Sketch a graph of the relation

{(x, y) x, y ∈ R and y > x2}.

6. A function f(x) is said to be invertible if there is another function g(x)

such that g(f(x)) = x for all values of x. (Usually, the inverse function,

g(x) would be denoted f−1(x).) Suppose a function is presented to

you as a relation – that is, you are just given a set of pairs. How

can you distinguish whether the function represented by this list of

input/output pairs is invertible? How can you produce the inverse (as

a set of ordered pairs)?
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7. There is a relation known as “has color” which goes from the set

F = {orange, cherry, pumpkin, banana}

to the set

C = {orange, red, green, yellow}.

What pairs are in “has color”?
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Chapter 2

Logic and quantifiers

2.1 Predicates and Logical Connectives

Exercises — 2.1

1. Design a digital logic circuit (using and, or & not gates) that imple-

ments an exclusive or.

25
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2. Consider the sentence “This is a sentence which does not refer to itself.”

which was given in the beginning of this chapter as an example. Is this

sentence a statement? If so, what is its truth value?

3. Consider the sentence “This sentence is false.” Is this sentence a state-

ment?
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4. Complete truth tables for each of the sentences (A∧B)∨C and A∧(B∨
C). Does it seem that these sentences have the same logical content?
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5. There are two other logical connectives that are used somewhat less

commonly than ∨ and ∧. These are the Scheffer stroke and the Peirce

arrow – written | and ↓, respectively — they are also known as NAND

and NOR.

The truth tables for these connectives are:

A B A |B
T T φ
T φ T
φ T T
φ φ T

and

A B A ↓ B
T T φ
T φ φ
φ T φ
φ φ T

Find an expression for (A ∧∼B)∨C using only these new connectives

(as well as negation and the variable symbols themselves).
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6. The famous logician Raymond Smullyan devised a family of logical

puzzles around a fictitious place he called “the Island of Knights and

Knaves.” The inhabitants of the island are either knaves, who always

make false statements, or knights, who always make truthful state-

ments.

In the most famous knight/knave puzzle, you are in a room which has

only two exits. One leads to certain death and the other to freedom.

There are two individuals in the room, and you know that one of them

is a knight and the other is a knave, but you don’t know which. Your

challenge is to determine the door which leads to freedom by asking a

single question.
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2.2 Implication

Exercises — 2.2

1. The transitive property of equality says that if a = b and b = c then

a = c. Does the implication arrow satisfy a transitive property? If so,

state it.

2. Complete truth tables for the compound sentences A =⇒ B and

∼A ∨B.

3. Complete a truth table for the compound sentence A =⇒ (B =⇒ C)

and for the sentence (A =⇒ B) =⇒ C. What can you conclude

about conditionals and the associative property?
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4. Determine a sentence using the and connector (∧) that gives the nega-

tion of A =⇒ B.

5. Rewrite the sentence “Fix the toilet or I won’t pay the rent!” as a

conditional.

6. Why is it that the sentence “If pigs can fly, I am the king of Mesopotamia.”

true?

7. Express the statement A =⇒ B using the Peirce arrow and/or the

Scheffer stroke. (See Exercise ?? in the previous section.)
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8. Find the contrapositives of the following sentences.

(a) If you can’t do the time, don’t do the crime.

(b) If you do well in school, you’ll get a good job.

(c) If you wish others to treat you in a certain way, you must treat

others in that fashion.

(d) If it’s raining, there must be clouds.

(e) If an ≤ bn, for all n and
∑∞

n=0 bn is a convergent series, then∑∞
n=0 an is a convergent series.

9. What are the converse and inverse of “If you watch my back, I’ll watch

your back.”?
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10. The integral test in Calculus is used to determine whether an infinite

series converges or diverges: Suppose that f(x) is a positive, decreasing,

real-valued function with limx−→∞ f(x) = 0, if the improper integral∫∞
0
f(x) has a finite value, then the infinite series

∑∞
n=1 f(n) converges.

The integral test should be envisioned by letting the series correspond

to a right-hand Riemann sum for the integral, since the function is

decreasing, a right-hand Riemann sum is an underestimate for the value

of the integral, thus

∞∑
n=1

f(n) <

∫ ∞
0

f(x).

Discuss the meanings of and (where possible) provide justifications for

the inverse, converse and contrapositive of the conditional statement

in the integral test.
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11. On the Island of Knights and Knaves (see page ??) you encounter two

individuals named Locke and Demosthenes.

Locke says, “Demosthenes is a knave.”

Demosthenes says “Locke and I are knights.”

Who is a knight and who a knave?
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2.3 Logical equivalences

Exercises — 2.3

1. There are 3 operations used in basic algebra (addition, multiplication

and exponentiation) and thus there are potentially 6 different distribu-

tive laws. State all 6 “laws” and determine which 2 are actually valid.

(As an example, the distributive law of addition over multiplication

would look like x+ (y · z) = (x+ y) · (x+ z), this isn’t one of the true

ones.)
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2. Use truth tables to verify or disprove the following logical equivalences.

(a) (A ∧B) ∨B ∼= (A ∨B) ∧B

(b) A ∧ (B ∨ ∼A) ∼= A ∧B

(c) (A ∧ ∼B) ∨ (∼A ∧ ∼B) ∼= (A ∨ ∼B) ∧ (∼A ∨ ∼B)

(d) The absorption laws.
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3. Draw pairs of related digital logic circuits that illustrate DeMorgan’s

laws.

4. Find the negation of each of the following and simplify as much as

possible.

(a) (A ∨B) ⇐⇒ C

(b) (A ∨B) =⇒ (A ∧B)



38 CHAPTER 2. LOGIC AND QUANTIFIERS

5. Because a conditional sentence is equivalent to a certain disjunction,

and because DeMorgan’s law tells us that the negation of a disjunc-

tion is a conjunction, it follows that the negation of a conditional is a

conjunction. Find denials (the negation of a sentence is often called its

“denial”) for each of the following conditionals.

(a) “If you smoke, you’ll get lung cancer.”

(b) “If a substance glitters, it is not necessarily gold.”

(c) “If there is smoke, there must also be fire.”

(d) “If a number is squared, the result is positive.”

(e) “If a matrix is square, it is invertible.”
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6. The so-called “ethic of reciprocity” is an idea that has come up in

many of the world’s religions and philosophies. Below are statements

of the ethic from several sources. Discuss their logical meanings and

determine which (if any) are logically equivalent.

(a) “One should not behave towards others in a way which is disagree-

able to oneself.” Mencius Vii.A.4 (Hinduism)

(b) “None of you [truly] believes until he wishes for his brother what

he wishes for himself.” Number 13 of Imam “Al-Nawawi’s Forty

Hadiths.” (Islam)

(c) “And as ye would that men should do to you, do ye also to them

likewise.” Luke 6:31, King James Version. (Christianity)

(d) “What is hateful to you, do not to your fellow man. This is the law:

all the rest is commentary.” Talmud, Shabbat 31a. (Judaism)

(e) “An it harm no one, do what thou wilt” (Wicca)

(f) “What you would avoid suffering yourself, seek not to impose on

others.” (the Greek philosopher Epictetus – first century A.D.)

(g) “Do not do unto others as you expect they should do unto you.

Their tastes may not be the same.” (the Irish playwright George

Bernard Shaw – 20th century A.D.)
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7. You encounter two natives of the land of knights and knaves. Fill in

an explanation for each line of the proofs of their identities.

(a) Natasha says, “Boris is a knave.”

Boris says, “Natasha and I are knights.”

Claim: Natasha is a knight, and Boris is a knave.

Proof: If Natasha is a knave, then Boris is a knight.

If Boris is a knight, then Natasha is a knight.

Therefore, if Natasha is a knave, then Natasha is a knight.

Hence Natasha is a knight.

Therefore, Boris is a knave.

Q.E.D.

(b) Bonaparte says “I am a knight and Wellington is a knave.”

Wellington says “I would tell you that B is a knight.”

Claim: Bonaparte is a knight and Wellington is a knave.

Proof: Either Wellington is a knave or Wellington is a

knight.

If Wellington is a knight it follows that Bonaparte is a

knight.

If Bonaparte is a knight then Wellington is a knave.

So, if Wellington is a knight then Wellington is a knave

(which is impossible!)

Thus, Wellington is a knave.

Since Wellington is a knave, his statement “I would tell

you that Bonaparte is a knight” is false.

So Wellington would in fact tell us that Bonaparte is a

knave.

Since Wellington is a knave we conclude that Bonaparte
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is a knight.

Thus Bonaparte is a knight and Wellington is a knave (as

claimed).

Q.E.D.
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2.4 Two-column proofs

Exercises — 2.4

Write two-column proofs that verify each of the following logical equiva-

lences.

1. A ∨ (A ∧B) ∼= A ∧ (A ∨B)

2. (A ∧ ∼B) ∨ A ∼= A

3. A ∨B ∼= A ∨ (∼A ∧B)

4. ∼(A ∨ ∼B) ∨ (∼A ∧ ∼B) ∼= ∼A

5. A ∼= A ∧ ((A ∨ ∼B) ∨ (A ∨B))

6. (A ∧ ∼B) ∧ (∼A ∨B ∼= c

7. A ∼= A ∧ (A ∨ (A ∧ (B ∨ C)))

8. ∼(A ∧B) ∧ ∼(A ∧ C) ∼= ∼A ∨ (∼B ∧ ∼C)
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2.5 Quantified statements

Exercises — 2.5

1. There is a common variant of the existential quantifier, ∃!, if you write

∃!x, P (x) you are asserting that there is a unique element in the uni-

verse that makes P (x) true. Determine how to negate the sentence

∃!x, P (x).

2. The order in which quantifiers appear is important. Let L(x, y) be

the open sentence “x is in love with y.” Discuss the meanings of the

following quantified statements and find their negations.

(a) ∀x ∃y L(x, y).

(b) ∃x ∀y L(x, y).

(c) ∀x ∀y L(x, y).

(d) ∃x ∃y L(x, y).

3. Determine a useful denial of:

∀ε > 0 ∃δ > 0∀x (|x− c| < δ) =⇒ (|f(x)− l| < ε).

The denial above gives a criterion for saying limx→c f(x) 6= l.

4. A Sophie Germain prime is a prime number p such that the corre-

sponding odd number 2p + 1 is also a prime. For example 11 is a

Sophie Germain prime since 23 = 2 · 11 + 1 is also prime. Almost all

Sophie Germain primes are congruent to 5 (mod 6), nevertheless, there

are exceptions – so the statement “There are Sophie Germain primes

that are not 5 mod 6.” is true. Verify this.

5. Alvin, Betty, and Charlie enter a cafeteria which offers three different

entrees, turkey sandwich, veggie burger, and pizza; four different bev-

erages, soda, water, coffee, and milk; and two types of desserts, pie and
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pudding. Alvin takes a turkey sandwich, a soda, and a pie. Betty takes

a veggie burger, a soda, and a pie. Charlie takes a pizza and a soda.

Based on this information, determine whether the following statements

are true or false.

(a) ∀ people p, ∃ dessert d such that p took d.

(b) ∃ person p such that ∀ desserts d, p did not take d.

(c) ∀ entrees e, ∃ person p such that p took e.

(d) ∃ entree e such that ∀ people p, p took e.

(e) ∀ people p, p took a dessert ⇐⇒ p did not take a pizza.

(f) Change one word of statement ?? so that it becomes true.

(g) Write down the negation of ?? and compare it to statement ??.

Hopefully you will see that they are the same! Does this make

you want to modify one or both of your answers to ?? and ???
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2.6 Deductive reasoning and Argument forms

Exercises — 2.6

1. In the movie “Monty Python and the Holy Grail” we encounter a me-

dieval villager who (with a bit of prompting) makes the following ar-

gument.

If she weighs the same as a duck, then she’s made of wood.

If she’s made of wood then she’s a witch.

Therefore, if she weighs the same as a duck, she’s a witch.

Which rule of inference is he using?

2. In constructive dilemma, the antecedent of the conditional sentences

are usually chosen to represent opposite alternatives. This allows us to

introduce their disjunction as a tautology. Consider the following proof

that there is never any reason to worry (found on the walls of an Irish

pub).

Either you are sick or you are well.

If you are well there’s nothing to worry about.

If you are sick there are just two possibilities:

Either you will get better or you will die.

If you are going to get better there’s nothing to worry about.

If you are going to die there are just two possibilities:

Either you will go to Heaven or to Hell.

If you go to Heaven there is nothing to worry about. If you go

to Hell, you’ll be so busy shaking hands with all your friends

there won’t be time to worry . . .

Identify the three tautologies that are introduced in this “proof.”
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3. For each of the following arguments, write it in symbolic form and

determine which rules of inference are used.

(a) You are either with us, or you’re against us. And you don’t

appear to be with us. So, that means you’re against us!

(b) All those who had cars escaped the flooding. Sandra had a car –

therefore, Sandra escaped the flooding.

(c) When Johnny goes to the casino, he always gambles ’til he goes

broke. Today, Johnny has money, so Johnny hasn’t been to the

casino recently.

(d) (A non-constructive proof that there are irrational numbers a

and b such that ab is rational.) Either
√

2
√
2

is rational or it is

irrational. If
√

2
√
2

is rational, we let a = b =
√

2. Otherwise, we

let a =
√

2
√
2

and b =
√

2. (Since
√

2
√
2
√
2

= 2, which is rational.)

It follows that in either case, there are irrational numbers a and b

such that ab is rational.
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2.7 Validity of arguments and common errors

Exercises — 2.7

1. Determine the logical form of the following arguments. Use symbols to

express that form and determine whether the form is valid or invalid. If

the form is invalid, determine the type of error made. Comment on the

soundness of the argument as well, in particular, determine whether

any of the premises are questionable.

(a) All who are guilty are in prison.

George is not in prison.

Therefore, George is not guilty.

(b) If one eats oranges one will have high levels of vitamin C.

You do have high levels of vitamin C.

Therefore, you must eat oranges.

(c) All fish live in water.

The mackerel is a fish.

Therefore, the mackerel lives in water.

(d) If you’re lazy, don’t take math courses.

Everyone is lazy.

Therefore, no one should take math courses.

(e) All fish live in water.

The octopus lives in water.

Therefore, the octopus is a fish.

(f) If a person goes into politics, they are a scoundrel.

Harold has gone into politics.

Therefore, Harold is a scoundrel.

2. Below is a rule of inference that we call extended elimination.
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(A ∨B) ∨ C
∼A
∼B

∴ C

Use a truth table to verify that this rule is valid.

3. If we allow quantifiers and open sentences in an argument form we get

a couple of new argument forms. Arguments involving existentially

quantified premises are rare – the new forms we are speaking of are

called “universal modus ponens” and “universal modus tollens.” The

minor premises may also be quantified or they may involve particu-

lar elements of the universe of discourse – this leads us to distinguish

argument subtypes that are termed “universal” and “particular.”

For example
∀x,A(x) =⇒ B(x)
A(p)

∴ B(p)
is the particular form of univer-

sal modus ponens (here, p is not a variable – it stands for some particu-

lar element of the universe of discourse) and
∀x,A(x) =⇒ B(x)
∀x,∼B(x)

∴ ∀x,∼A(x)
is the universal form of (universal) modus tollens.

Reexamine the arguments from problem (1), determine their forms (in-

cluding quantifiers) and whether they are universal or particular.

4. Identify the rule of inference being used.

(a) The Buley Library is very tall.

Therefore, either the Buley Library is very tall or it has many

levels underground.

(b) The grass is green.

The sky is blue.

Therefore, the grass is green and the sky is blue.

(c) g has order 3 or it has order 4.

If g has order 3, then g has an inverse.
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If g has order 4, then g has an inverse.

Therefore, g has an inverse.

(d) x is greater than 5 and x is less than 53.

Therefore, x is less than 53.

(e) If a|b, then a is a perfect square.

If a|b, then b is a perfect square.

Therefore, if a|b, then a is a perfect square and b is a perfect

square.

5. Read the following proof that the sum of two odd numbers is even.

Discuss the rules of inference used.

Proof: Let x and y be odd numbers. Then x = 2k + 1 and

y = 2j + 1 for some integers j and k. By algebra,

x+ y = 2k + 1 + 2j + 1 = 2(k + j + 1).

Note that k+ j+1 is an integer because k and j are integers.

Hence x+ y is even.

Q.E.D.

6. Sometimes in constructing a proof we find it necessary to “weaken” an

inequality. For example, we might have already deduced that x < y but

what we need in our argument is that x ≤ y. It is okay to deduce x ≤ y

from x < y because the former is just shorthand for x < y ∨ x = y.

What rule of inference are we using in order to deduce that x ≤ y is

true in this situation?
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Chapter 3

Proof techniques I — Standard

methods

51
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Even

∀n ∈ Z,

n is even ⇐⇒ ∃k ∈ Z, n = 2k

Odd

∀n ∈ Z,

n is odd ⇐⇒ ∃k ∈ Z, n = 2k + 1

Divisibility

∀n ∈ Z, ∀ d > 0 ∈ Z,

d |n ⇐⇒ ∃k ∈ Z, n = kd

Floor

∀x ∈ R,

y = bxc ⇐⇒ y ∈ Z ∧ y ≤ x < y + 1

Ceiling

∀x ∈ R,

y = dxe ⇐⇒ y ∈ Z ∧ y − 1 < x ≤ y

Quotient-remainder theorem, Div and Mod

∀n, d > 0 ∈ Z,

∃!q, r ∈ Z, n = qd+ r ∧ 0 ≤ r < d

n div d = q

n mod d = r

Prime

∀ p ∈ Z

p is prime ⇐⇒
(p > 1) ∧ (∀x, y ∈ Z+, p = xy =⇒ x = 1 ∨ y = 1)

Table 3.1: The definitions of elementary number theory restated.
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3.1 Direct proofs of universal statements

Exercises — 3.1

1. Every prime number greater than 3 is of one of the two forms 6k + 1

or 6k + 5. What statement(s) could be used as hypotheses in proving

this theorem?

2. Prove that 129 is odd.

3. Prove that the sum of two rational numbers is a rational number.

4. Prove that the sum of an odd number and an even number is odd.

5. Prove that if the sum of two integers is even, then so is their difference.

6. Prove that for every real number x, 2
3
< x < 3

4
=⇒ b12xc = 8.

7. Prove that if x is an odd integer, then x2 is of the form 4k+ 1 for some

integer k.

8. Prove that for all integers a and b, if a is odd and 6 | (a + b), then b is

odd.

9. Prove that ∀x ∈ Rx 6∈ Z =⇒ bxc+ b−xc = −1.

10. Define the evenness of an integer n by:

evenness(n) = k ⇐⇒ 2k |n ∧ 2k+1 - n

State and prove a theorem concerning the evenness of products.

11. Suppose that a, b and c are integers such that a |b and b |c. Prove that

a |c.
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12. Suppose that a, b, c and d are integers with a 6= c. Further, suppose

that x is a real number satisfying the equation

ax+ b

cx+ d
= 1.

Show that x is rational. Where is the hypothesis a 6= c used?

13. Show that if two positive integers a and b satisfy a | b and b | a then

they are equal.
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3.2 More direct proofs

Exercises — 3.2

1. Suppose you have a savings account which bears interest compounded

monthly. The July statement shows a balance of $ 2104.87 and the

September statement shows a balance $ 2125.97. What would be the

balance on the (missing) August statement?

2. Recall that a quadratic equation ax2 +bx+c = 0 has two real solutions

if and only if the discriminant b2−4ac is positive. Prove that if a and c

have different signs then the quadratic equation has two real solutions.

3. Prove that if x3 − x2 is negative then 3x+ 4 < 7.

4. Prove that for all integers a, b, and c, if a|b and a|(b+ c), then a|c.

5. Show that if x is a positive real number, then x+ 1
x
≥ 2.

6. Prove that for all real numbers a, b, and c, if ac < 0, then the quadratic

equation ax2 + bx+ c = 0 has two real solutions.

Hint: The quadratic equation ax2 + bx+ c = 0 has two real solutions

if and only if b2 − 4ac > 0 and a 6= 0.

7. Show that
(
n
k

)
·
(
k
r

)
=

(
n
r

)
·
(
n−r
k−r

)
(for all integers r, k and n with

r ≤ k ≤ n).

8. In proving the product rule in Calculus using the definition of the

derivative, we might start our proof with:

d

dx
(f(x) · g(x))

= lim
h−→0

f(x+ h) · g(x+ h)− f(x) · g(x)

h
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The last two lines of our proof should be:

= lim
h−→0

f(x+ h)− f(x)

h
· g(x) + f(x) · lim

h−→0

g(x+ h)− g(x)

h

=
d

dx
(f(x)) · g(x) + f(x) · d

dx
(g(x))

Fill in the rest of the proof.
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3.3 Indirect proofs: contradiction and con-

traposition

Exercises — 3.3

1. Prove that if the cube of an integer is odd, then that integer is odd.

2. Prove that whenever a prime p does not divide the square of an integer,

it also doesn’t divide the original integer. (p - x2 =⇒ p - x)

3. Prove (by contradiction) that there is no largest integer.

4. Prove (by contradiction) that there is no smallest positive real number.

5. Prove (by contradiction) that the sum of a rational and an irrational

number is irrational.

6. Prove (by contraposition) that for all integers x and y, if x+ y is odd,

then x 6= y.

7. Prove (by contraposition) that for all real numbers a and b, if ab is

irrational, then a is irrational or b is irrational.

8. A Pythagorean triple is a set of three natural numbers, a, b and c, such

that a2 + b2 = c2. Prove that, in a Pythagorean triple, at least one

of a and b is even. Use either a proof by contradiction or a proof by

contraposition.

9. Suppose you have 2 pairs of positive real numbers whose products are

1. That is, you have (a, b) and (c, d) in R2 satisfying ab = cd = 1.

Prove that a < c implies that b > d.
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3.4 Disproofs

Exercises — 3.4

1. Find a polynomial that assumes only prime values for a reasonably

large range of inputs.

2. Find a counterexample to the conjecture that ∀a, b, c ∈ Z, a | bc =⇒
a |b ∨ a |c using only powers of 2.

3. The alternating sum of factorials provides an interesting example of a

sequence of integers.

1! = 1

2!− 1! = 1

3!− 2! + 1! = 5

4!− 3! + 2!− 1! = 19

et cetera

Are they all prime? (After the first two 1’s.)

4. It has been conjectured that whenever p is prime, 2p − 1 is also prime.

Find a minimal counterexample.

5. True or false: The sum of any two irrational numbers is irrational.

Prove your answer.

6. True of false: There are two irrational numbers whose sum is rational.

Prove your answer.

7. True or false: The product of any two irrational numbers is irrational.

Prove your answer.
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8. True or false: There are two irrational numbers whose product is ra-

tional. Prove your answer.

9. True or false: Whenever an integer n is a divisor of the square of an

integer, m2, it follows that n is a divisor of m as well. (In symbols,

∀n ∈ Z,∀m ∈ Z, n | m2 =⇒ n | m.) Prove your answer.

10. In an exercise in Section ?? we proved that the quadratic equation ax2+

bx + c = 0 has two solutions if ac < 0. Find a counterexample which

shows that this implication cannot be replaced with a biconditional.
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3.5 Even more direct proofs: By cases and

By exhaustion

Exercises — 3.5

1. Prove that if n is an odd number then n4 (mod 16) = 1.

2. Prove that every prime number other than 2 and 3 has the form 6q+ 1

or 6q + 5 for some integer q. (Hint: this problem involves thinking

about cases as well as contrapositives.)

3. Show that the sum of any three consecutive integers is divisible by 3.

4. There is a graph known as K4 that has 4 nodes and there is an edge

between every pair of nodes. The pebbling number of K4 has to be at

least 4 since it would be possible to put one pebble on each of 3 nodes

and not be able to reach the remaining node using pebbling moves.

Show that the pebbling number of K4 is actually 4.

5. Find the pebbling number of a graph whose nodes are the corners and

whose edges are the, uhmm, edges of a cube.

6. A vampire number is a 2n digit number v that factors as v = xy where

x and y are n digit numbers and the digits of v are the union of the

digits in x and y in some order. The numbers x and y are known as

the “fangs” of v. To eliminate trivial cases, pairs of trailing zeros are

disallowed.

Show that there are no 2-digit vampire numbers.

Show that there are seven 4-digit vampire numbers.

7. Lagrange’s theorem on representation of integers as sums of squares

says that every positive integer can be expressed as the sum of at most
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4 squares. For example, 79 = 72 + 52 + 22 + 12. Show (exhaustively)

that 15 can not be represented using fewer than 4 squares.

8. Show that there are exactly 15 numbers x in the range 1 ≤ x ≤ 100

that can’t be represented using fewer than 4 squares.

9. The trichotomy property of the real numbers simply states that every

real number is either positive or negative or zero. Trichotomy can be

used to prove many statements by looking at the three cases that it

guarantees. Develop a proof (by cases) that the square of any real

number is non-negative.

10. Consider the game called “binary determinant tic-tac-toe”1 which is

played by two players who alternately fill in the entries of a 3 × 3

array. Player One goes first, placing 1’s in the array and player Zero

goes second, placing 0’s. Player One’s goal is that the final array have

determinant 1, and player Zero’s goal is that the determinant be 0.

The determinant calculations are carried out mod 2.

Show that player Zero can always win a game of binary determinant

tic-tac-toe by the method of exhaustion.

1 This question was problem A4 in the 63rd annual William Lowell Putnam Math-

ematics Competition (2002). There are three collections of questions and answers from

previous Putnam exams available from the MAA [?, ?, ?]
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3.6 Proofs and disproofs of existential state-

ments

Exercises — 3.6

1. Show that there is a perfect square that is the sum of two perfect

squares.

2. Show that there is a perfect cube that is the sum of three perfect cubes.

3. Show that the WOP doesn’t hold in the integers. (This is an existence

proof, you show that there is a subset of Z that doesn’t have a smallest

element.)

4. Show that the WOP doesn’t hold in Q+.

5. In the proof of Theorem ?? we weaseled out of showing that d | b. Fill

in that part of the proof.

6. Give a proof of the unique existence of q and r in the division algorithm.

7. A digraph is a drawing containing a collection of points that are con-

nected by arrows. The game known as scissors-paper-rock can be rep-

resented by a digraph that is balanced (each point has the same number

of arrows going out as going in). Show that there is a balanced digraph

having 5 points.

smashes

scissors

rock

covers

cuts

paper
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Sets

No more turkey, but I’d like some more of the bread it ate. –Hank Ketcham

4.1 Basic notions of set theory

Exercises — 4.1

1. What is the power set of ∅? Hint: if you got the last exercise in the

chapter you’d know that this power set has 20 = 1 element.

2. Try iterating the power set operator. What is P(P(∅))? What is

P(P(P(∅)))?

3. Determine the following cardinalities.

(a) A = {1, 2, {3, 4, 5}} |A| =

(b) B = {{1, 2, 3, 4, 5}} |B| =

4. What, in Logic, corresponds the notion ∅ in Set theory?

5. What, in Set theory, corresponds to the notion t (a tautology) in Logic?

6. What is the truth set of the proposition P (x) = “3 divides x and 2

divides x”?

63
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7. Find a logical open sentence such that {0, 1, 4, 9, . . .} is its truth set.

8. How many singleton sets are there in the power set of {a, b, c, d, e}?
“Doubleton” sets?

9. How many 8 element subsets are there in P({a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p})?

10. How many singleton sets are there in the power set of {1, 2, 3, . . . n}?
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4.2 Containment

Exercises — 4.2

1. Insert either ∈ or ⊆ in the blanks in the following sentences (in order

to produce true sentences).

i) 1 {3, 2, 1, {a, b}} iii) {a, b} {3, 2, 1, {a, b}}
ii) {a} {a, {a, b}} iv) {{a, b}} {a, {a, b}}

2. Suppose that p is a prime, for each n in Z+, define the set Pn = {x ∈
Z+ pn |x}. Conjecture and prove a statement about the containments

between these sets.

3. Provide a counterexample to dispel the notion that a subset must have

fewer elements than its superset.

4. We have seen that A ⊆ B corresponds to MA =⇒ MB. What

corresponds to the contrapositive statement?

5. Determine two sets A and B such that both of the sentences A ∈ B

and A ⊆ B are true.

6. Prove that the set of perfect fourth powers is contained in the set of

perfect squares.
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4.3 Set operations

Exercises — 4.3

1. Let A = {1, 2, {1, 2}, b} and let B = {a, b, {1, 2}}. Find the following:

(a) A ∩B

(b) A ∪B

(c) A \B

(d) B \ A

(e) A4B

2. In a standard deck of playing cards one can distinguish sets based on

face-value and/or suit. Let A, 2, . . . 9, 10, J,Q and K represent the sets

of cards having the various face-values. Also, let ♥, ♠, ♣ and ♦ be the

sets of cards having the possible suits. Find the following

(a) A ∩ ♥

(b) A ∪ ♥

(c) J ∩ (♠ ∪♥)

(d) K ∩ ♥

(e) A ∩K

(f) A ∪K

3. Do element-chasing proofs (show that an element is in the left-hand

side if and only if it is in the right-hand side) to prove each of the

following set equalities.

(a) A ∩B = A ∪B

(b) A ∪B = A ∪ (A ∩B)
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(c) A4B = (A ∪B) \ (A ∩B)

(d) (A ∪B) \ C = (A \ C) ∪ (B \ C)

4. For each positive integer n, we’ll define an interval In by

In = [−n, 1/n).

Find the union and intersection of all the intervals in this infinite family.

⋃
n∈N

In =

⋂
n∈N

In =

5. There is a set X such that, for all sets A, we have X4A = A. What

is X?

6. There is a set Y such that, for all sets A, we have Y4A = A. What is

Y ?

7. In proving a set-theoretic identity, we are basically showing that two

sets are equal. One reasonable way to proceed is to show that each is

contained in the other. Prove that A∩ (B ∪C) = (A∩B)∪ (A∩C) by

showing that A∩ (B∪C) ⊆ (A∩B)∪ (A∩C) and (A∩B)∪ (A∩C) ⊆
A ∩ (B ∪ C).

8. Prove that A∪(B∩C) = (A∪B)∩(A∪C) by showing that A∪(B∩C) ⊆
(A ∪B) ∩ (A ∪ C) and (A ∪B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).

9. Prove the set-theoretic versions of DeMorgan’s laws using the technique

discussed in the previous problems.
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10. The previous technique (showing that A = B by arguing that A ⊆
B ∧ B ⊆ A) will have an outline something like

Proof: First we will show that A ⊆ B.

Towards that end, suppose x ∈ A.

...

Thus x ∈ B.

Now, we will show that B ⊆ A.

Suppose that x ∈ B.

...

Thus x ∈ A.

Therefore A ⊆ B ∧ B ⊆ A so we conclude that A = B.

Q.E.D.

Formulate a proof that A4B = (A ∪B) \ (A ∩B).
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Intersection

version

Union

version

Commutative

laws
A ∩B = B ∩ A A ∪B = B ∪ A

Associative

laws

A ∩ (B ∩ C)

= (A ∩B) ∩ C
A ∪ (B ∪ C)

= (A ∪B) ∪ C

Distributive

laws

A ∩ (B ∪ C) =

(A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) =

(A ∪B) ∩ (A ∪ C)

DeMorgan’s

laws

A ∩B
= A ∪B

A ∪B
= A ∩B

Double

complement
A = A same

Complementarity A ∩ A = ∅ A ∪ A = U

Identity

laws
A ∩ U = A A ∪ ∅ = A

Domination A ∩ ∅ = ∅ A ∪ U = U

Idempotence A ∩ A = A A ∪ A = A

Absorption A ∩ (A ∪B) = A A ∪ (A ∩B) = A

Table 4.1: Basic set theoretic equalities.
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4.4 Venn diagrams

Exercises — 4.4

1. Venn diagrams are usually made using simple closed curves with no

further restrictions. Try creating Venn diagrams for 3, 4 and 5 sets (in

general position) using rectangular simple closed curves.

2. We call a curve rectilinear if it is made of line segments that meet

at right angles. Use rectilinear simple closed curves to create a Venn

diagram for 5 sets.

3. Argue as to why rectilinear curves will suffice to build any Venn dia-

gram.

4. Find the disjunctive normal form of A ∩ (B ∪ C).

5. Find the disjunctive normal form of (A4B)4C

6. The prototypes for the modus ponens and modus tollens argument

forms are the following:

All men are mortal.

Socrates is a man.

Therefore Socrates is

mortal.

and

All men are mortal.

Zeus is not mortal.

Therefore Zeus is not a

man.

Illustrate these arguments using Venn diagrams.

7. Use Venn diagrams to convince yourself of the validity of the following

containment statement

(A ∩B) ∪ (C ∩D) ⊆ (A ∪ C) ∩ (B ∪D).

Now prove it!
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8. Use Venn diagrams to show that the following set equivalence is false.

(A ∪B) ∩ (C ∪D) = (A ∪ C) ∩ (B ∪D)
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4.5 Russell’s Paradox

Exercises — 4.5

1. Verify that (A =⇒ ∼A) ∧ (∼A =⇒ A) is a logical contradiction

in two ways: by filling out a truth table and using the laws of logical

equivalence.

2. One way out of Russell’s paradox is to declare that the collection of sets

that don’t contain themselves as elements is not a set itself. Explain

how this circumvents the paradox.



Chapter 5

Proof techniques II —

Induction

5.1 The principle of mathematical induction

Exercises — 5.1

1. Consider the sequence of number that are 1 greater than a multiple of

4. (Such numbers are of the form 4j + 1.)

1, 5, 9, 13, 17, 21, 25, 29, . . .

The sum of the first several numbers in this sequence can be expressed

as a polynomial.

n∑
j=0

4j + 1 = 2n2 + 3n+ 1

Complete the following table in order to provide evidence that the

formula above is correct.
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n
∑n

j=0 4j + 1 2n2 + 3n+ 1

0 1 1
1 1 + 5 = 6 2 · 12 + 3 · 1 + 1 = 6
2 1 + 5 + 9 =
3
4

2. What is wrong with the following inductive proof of “all horses are the

same color.”?

Theorem Let H be a set of n horses, all horses in H are the same

color.

Proof: We proceed by induction on n.

Basis: Suppose H is a set containing 1 horse. Clearly this

horse is the same color as itself.

Inductive step: Given a set of k+ 1 horses H we can con-

struct two sets of k horses. SupposeH = {h1, h2, h3, . . . hk+1}.
Define Ha = {h1, h2, h3, . . . hk} (i.e. Ha contains just the first

k horses) and Hb = {h2, h3, h4, . . . hk+1} (i.e. Hb contains the

last k horses). By the inductive hypothesis both these sets

contain horses that are “all the same color.” Also, all the

horses from h2 to hk are in both sets so both Ha and Hb con-

tain only horses of this (same) color. Finally, we conclude

that all the horses in H are the same color.

Q.E.D.

3. For each of the following theorems, write the statement that must be

proved for the basis – then prove it, if you can!

(a) The sum of the first n positive integers is (n2 + n)/2.
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(b) The sum of the first n (positive) odd numbers is n2.

(c) If n coins are flipped, the probability that all of them are “heads”

is 1/2n.

(d) Every 2n×2n chessboard – with one square removed – can be tiled

perfectly1 by L-shaped trominoes. (A trominoe is like a domino

but made up of 3 little squares. There are two kinds, straight

and L-shaped . This problem is only concerned

with the L-shaped trominoes.)

4. Suppose that the rules of the game for PMI were changed so that one

did the following:

• Basis. Prove that P (0) is true.

• Inductive step. Prove that for all k, Pk implies Pk+2

Explain why this would not constitute a valid proof that Pn holds for

all natural numbers n. How could we change the basis in this outline

to obtain a valid proof?

1Here, “perfectly tiled” means that every trominoe covers 3 squares of the chessboard

(nothing hangs over the edge) and that every square of the chessboard is covered by some

trominoe.
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5.2 Formulas for sums and products

Exercises — 5.2

1. Write an inductive proof of the formula for the sum of the first n cubes.

2. Find a formula for the sum of the first n fourth powers.

3. The sum of the first n natural numbers is sometimes called the n-th

triangular number Tn. Triangular numbers are so-named because one

can represent them with triangular shaped arrangements of dots.

The first several triangular numbers are 1, 3, 6, 10, 15, et cetera.

Determine a formula for the sum of the first n triangular numbers(
n∑

i=1

Ti

)
and prove it using PMI.

4. Consider the alternating sum of squares:

1

1− 4 = −3

1− 4 + 9 = 6

1− 4 + 9− 16 = −10

et cetera

Guess a general formula for
∑n

i=1(−1)i−1i2, and prove it using PMI.

5. Prove the following formula for a product.
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n∏
i=2

(
1− 1

i

)
=

1

n

6. Prove
n∑

j=0

(4j + 1) = 2n2 + 3n+ 1 for all integers n ≥ 0.

7. Prove
n∑

i=1

1

(2i− 1)(2i+ 1)
=

n

2n+ 1
for all natural numbers n.

8. The Fibonacci numbers are a sequence of integers defined by the rule

that a number in the sequence is the sum of the two that precede it.

Fn+2 = Fn + Fn+1

The first two Fibonacci numbers (actually the zeroth and the first) are

both 1.

Thus, the first several Fibonacci numbers are

F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, F5 = 8, F6 = 13, F7 = 21, et cetera

Use mathematical induction to prove the following formula involving

Fibonacci numbers.

n∑
i=0

(Fi)
2 = Fn · Fn+1
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5.3 Divisibility statements and other proofs

using PMI

Exercises — 5.3

Give inductive proofs of the following

1. ∀x ∈ N, 3 |x3 − x

2. ∀x ∈ N, 3 |x3 + 5x

3. ∀x ∈ N, 11 |x11 + 10x

4. ∀n ∈ N, 3 |4n − 1

5. ∀n ∈ N, 6 |(3n2 + 3n− 12)

6. ∀n ∈ N, 5 |(n5 − 5n3 + 14n

7. ∀n ∈ N, 4 |(13n + 4n− 1)

8. ∀n ∈ N, 7 |8n + 6

9. ∀n ∈ N, 6 |2n3 − 2n− 14

10. ∀n ≥ 3 ∈ N, 3n2 + 3n+ 1 < 2n3

11. ∀n > 3 ∈ N, n3 < 3n

12. ∀n ≥ 3 ∈ N, n3 + 3 > n2 + 3n+ 1

13. ∀x ≥ 4 ∈ N, x22x ≤ 4x
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5.4 The strong form of mathematical induc-

tion

Exercises — 5.4

Give inductive proofs of the following

1. A “postage stamp problem” is a problem that (typically) asks us to

determine what total postage values can be produced using two sorts

of stamps. Suppose that you have 3c stamps and 7c stamps, show

(using strong induction) that any postage value 12c or higher can be

achieved. That is,

∀n ∈ N, n ≥ 12 =⇒ ∃x, y ∈ N, n = 3x+ 7y.

2. Show that any integer postage of 12c or more can be made using only

4c and 5c stamps.

3. The polynomial equation x2 = x + 1 has two solutions, α = 1+
√
5

2
and

β = 1−
√
5

2
. Show that the Fibonacci number Fn is less than or equal to

αn for all n ≥ 0.
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Chapter 6

Relations and functions

6.1 Relations

Exercises — 6.1

1. The lexicographic order, <lex, is a relation on the set of all words,

where x <lex y means that x would come before y in the dictionary.

Consider just the three letter words like “iff”, “fig”, “the”, et cetera.

Come up with a usable definition for x1x2x3 <lex y1y2y3.

2. What is the graph of “=” in R× R?

3. The inverse of a relation R is denoted R−1. It contains exactly the

same ordered pairs as R but with the order switched. (So technically,

they aren’t exactly the same ordered pairs . . . )

R−1 = {(b, a) (a, b) ∈ R}

Define a relation S on R× R by S = {(x, y) y = sin x}. What is S−1?

Draw a single graph containing S and S−1.
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4. The “socks and shoes” rule is a very silly little mnemonic for remem-

bering how to invert a composition. If we think of undoing the process

of putting on our socks and shoes (that’s socks first, then shoes) we

have to first remove our shoes, then take off our socks.

The socks and shoes rule is valid for relations as well.

Prove that (S ◦ R)−1 = R−1 ◦ S−1.
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6.2 Properties of relations

Exercises — 6.2

1. Consider the relation S defined by S = {(x, y) x is smarter than y}.
Is S symmetric or anti-symmetric? Explain.

2. Consider the relation A defined by A = {(x, y) x has the same astrological sign as y}.
Is A symmetric or anti-symmetric? Explain.

3. Explain why both of the relations just described (in problems 1 and 2)

have the transitive property.

4. For each of the five properties, name a relation that has it and a relation

that doesn’t.
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6.3 Equivalence relations

Exercises — 6.3

1. Consider the relation A defined by A = {(x, y) x has the same astrological sign as y}.
Show that A is an equivalence relation. What equivalence class under

A do you belong to?

2. Define a relation � on the integers by x�y ⇐⇒ x2 = y2. Show

that � is an equivalence relation. List the equivalence classes x/� for

0 ≤ x ≤ 5.

3. Define a relation A on the set of all words by

w1Aw2 ⇐⇒ w1 is an anagram of w2.

Show that A is an equivalence relation. (Words are anagrams if the

letters of one can be re-arranged to form the other. For example, ‘ART’

and ‘RAT’ are anagrams.)

4. The two diagrams below both show a famous graph known as the Pe-

tersen graph. The picture on the left is the usual representation which

emphasizes its five-fold symmetry. The picture on the right highlights

the fact that the Petersen graph also has a three-fold symmetry. Label

the right-hand diagram using the same letters (A through J) in order

to show that these two representations are truly isomorphic.



6.3. EQUIVALENCE RELATIONS 85

A

B

CD

E

F

G

H

J

I

5. We will use the symbol Z∗ to refer to the set of all integers except 0.

Define a relation Q on the set of all pairs in Z × Z∗ (pairs of integers

where the second coordinate is non-zero) by (a, b)Q(c, d) ⇐⇒ ad =

bc. Show that Q is an equivalence relation.

6. The relation Q defined in the previous problem partitions the set of all

pairs of integers into an interesting set of equivalence classes. Explain

why

Q = (Z× Z∗)/Q.

Ultimately, this is the “right” definition of the set of rational numbers!

7. Reflect back on the proof in problem 5. Note that we were fairly careful

in assuring that the second coordinate in the ordered pairs is non-zero.

(This was the whole reason for introducing the Z∗ notation.) At what

point in the argument did you use this hypothesis?
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6.4 Ordering relations

Exercises — 6.4

1. In population ecology there is a partial order “predates” which basically

means that one organism feeds upon another. Strictly speaking this

relation is not transitive; however, if we take the point of view that

when a wolf eats a sheep, it is also eating some of the grass that the

sheep has fed upon, we see that in a certain sense it is transitive.

A chain in this partial order is called a “food chain” and so-called

apex predators are said to “sit atop the food chain”. Thus “apex

predator” is a term for a maximal element in this poset. When poisons

such as mercury and PCBs are introduced into an ecosystem, they

tend to collect disproportionately in the apex predators – which is why

pregnant women and young children should not eat shark or tuna but

sardines are fine.

Below is a small example of an ecology partially ordered by “predates”

Fox Alligator

Cow

Goose
Duck Robin

WormsGrass

Find the largest antichain in this poset.
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2. Referring to the poset given in exercise 1, match the following.

1. An (non-maximal) an-

tichain

2. A maximal antichain

3. A maximal element

4. A (non-maximal) chain

5. A maximal chain

6. A cover for “Worms”

7. A least element

8. A minimal element

a. Grass

b. Goose

c. Fox

d. {Grass,Duck}

e. There isn’t one!

f. {Fox,Alligator,Cow}

g.

{Cow,Duck,Robin,Goose}

h. {Worms,Robin,Fox}

3. The graph of the edges of a cube is one in an infinite sequence of

graphs. These graphs are defined recursively by “Make two copies of

the previous graph then join corresponding nodes in the two copies

with edges.” The 0-dimensional ‘cube’ is just a single point. The

1-dimensional cube is a single edge with a node at either end. The

2-dimensional cube is actually a square and the 3-dimensional cube is

what we usually mean when we say “cube.”

Make a careful drawing of a hypercube – which is the name of the graph

that follows the ordinary cube in this sequence.
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4. Label the nodes of a hypercube with the divisors of 210 in order to

produce a Hasse diagram of the poset determined by the divisibility

relation.

5. Label the nodes of a hypercube with the subsets of {a, b, c, d} in order

to produce a Hasse diagram of the poset determined by the subset

containment relation.

6. Complete a Hasse diagram for the poset of divisors of 11025 (partially

ordered by divisibility).

7. Find a collection of sets so that, when they are partially ordered by ⊆,

we obtain the same Hasse diagram as in the previous problem.
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6.5 Functions

Exercises — 6.5

1. For each of the following functions, give its domain, range and a possible

codomain.

(a) f(x) = sin (x)

(b) g(x) = ex

(c) h(x) = x2

(d) m(x) = x2+1
x2−1

(e) n(x) = bxc

(f) p(x) = 〈cos (x), sin (x)〉

2. Find a bijection from the set of odd squares, {1, 9, 25, 49, . . .}, to the

non-negative integers, Znoneg = {0, 1, 2, 3, . . .}. Prove that the function

you just determined is both injective and surjective. Find the inverse

function of the bijection above.

3. The natural logarithm function ln(x) is defined by a definite integral

with the variable x in the upper limit.

ln(x) =

∫ x

t=1

1

t
dt.

From this definition we can deduce that ln(x) is strictly increasing on

its entire domain, (0,∞). Why is this true?

We can use the above definition with x = 2 to find the value of ln(2) ≈
.693. We will also take as given the following rule (which is valid for

all logarithmic functions).

ln(ab) = b ln(a)
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Use the above information to show that there is neither an upper bound

nor a lower bound for the values of the natural logarithm. These facts

together with the information that ln is strictly increasing show that

Rng(ln) = R.

4. Georg Cantor developed a systematic way of listing the rational num-

bers. By “listing” a set one is actually developing a bijection from N to

that set. The method known as “Cantor’s Snake” creates a bijection

from the naturals to the non-negative rationals. First we create an

infinite table whose rows are indexed by positive integers and whose

columns are indexed by non-negative integers – the entries in this table

are rational numbers of the form “column index” / “row index.” We

then follow a snake-like path that zig-zags across this table – whenever

we encounter a rational number that we haven’t seen before (in lower

terms) we write it down. This is indicated in the diagram below by

circling the entries.

Effectively this gives us a function f which produces the rational num-

ber that would be found in a given position in this list. For example

f(1) = 0/1, f(2) = 1/1 and f(5) = 1/3.

What is f(26)? What is f(30)? What is f−1(3/4)? What is f−1(6/7)?
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0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0/1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/1

0/2 1/2 2/2 3/2 4/2 5/2 6/2 7/2 8/2

0/3 1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3

0/4 1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4

0/5 1/5 2/5 3/5 4/5 5/5 6/5 7/5 8/5

0/6 1/6 2/6 3/6 4/6 5/6 6/6 7/6 8/6

0/7 1/7 2/7 3/7 4/7 5/7 6/7 7/7 8/7

0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8
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6.6 Special functions

Exercises — 6.6

1. The n-th triangular number, denoted T (n), is given by the formula

T (n) = (n2 + n)/2. If we regard this formula as a function from R to

R, it fails the horizontal line test and so it is not invertible. Find a

suitable restriction so that T is invertible.

2. The usual algebraic procedure for inverting T (x) = (x2+x)/2 fails. Use

your knowledge of the geometry of functions and their inverses to find

a formula for the inverse. (Hint: it may be instructive to first invert

the simpler formula S(x) = x2/2 — this will get you the right vertical

scaling factor.)

3. What is π2(W (t))?

4. Find a right inverse for f(x) = |x|.

5. In three-dimensional space we have projection functions that go onto

the three coordinate axes (π1, π2 and π3) and we also have projections

onto coordinate planes. For example, π12 : R × R × R −→ R × R,

defined by

π12((x, y, z)) = (x, y)

is the projection onto the x–y coordinate plane.

The triple of functions (cos t, sin t, t) is a parametric expression for a

helix. Let H = {(cos t, sin t, t) t ∈ R} be the set of all points on the

helix. What is the set π12(H) ? What are the sets π13(H) and π23(H)?

6. Consider the set {1, 2, 3, . . . , 10}. Express the characteristic function

of the subset S = {1, 2, 3} as a set of ordered pairs.
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7. If S and T are subsets of a set D, what is the product of their charac-

teristic functions 1S · 1T ?

8. Evaluate the sum

10∑
i=1

1

i
· [i is prime].
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Chapter 7

Proof techniques III —

Combinatorics

7.1 Counting

1. Determine the number of entries in the following sequences.

(a) (999, 1000, 1001, . . . 2006)

(b) (13, 15, 17, . . . 199)

(c) (13, 19, 25, . . . 601)

(d) (5, 10, 17, 26, 37, . . . 122)

(e) (27, 64, 125, 216, . . . 8000)

(f) (7, 11, 19, 35, 67, . . . 131075)

2. How many “full houses” are there in Yahtzee? (A full house is a pair

together with a three-of-a-kind.)

3. In how many ways can you get “two pairs” in Yahtzee?

4. Prove that the binomial coefficients

(
n+ k − 1

k

)
and

(
n+ k − 1

n− 1

)
are

equal.
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5. The “Cryptographer’s alphabet” is used to supply small examples in

coding and cryptography. It consists of the first 6 letters, {a, b, c, d, e, f}.
How many “words” of length up to 6 can be made with this alphabet?

(A word need not actually be a word in English, for example both “fed”

and “dfe” would be words in the sense we are using the term.)

6. How many “words” are there of length 4, with distinct letters from the

Cryptographer’s alphabet, in which the letters appear in increasing

order alphabetically? (“Acef” would be one such word, but “cafe”

would not.)

7. How many “words” are there of length 4 from the Cryptographer’s

alphabet, with repeated letters allowed, in which the letters appear in

non-decreasing order alphabetically?

8. How many subsets does a finite set have?

9. How many handshakes will transpire when n people first meet?

10. How many functions are there from a set of size n to a set of size m?

11. How many relations are there from a set of size n to a set of size m?
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7.2 Parity and Counting arguments

Exercises — 7.2

1. A walking tour of Königsberg such as is described in this section, or

more generally, a circuit through an arbitrary graph that crosses each

edge precisely once and begins and ends at the same node is known

as an Eulerian circuit. An Eulerian path also crosses every edge of a

graph exactly once but it begins and ends at distinct nodes. For each

of the following graphs determine whether an Eulerian circuit or path

is possible, and if so, draw it.
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2. Complete the proof of the fact that “Every graph has an even number

of odd nodes.”

3. Provide an argument as to why an 8× 8 chessboard with two squares

pruned from diagonally opposite corners cannot be tiled with dominoes.

4. Prove that, if n is odd, any n × n chessboard with a square the same

color as one of its corners pruned can be tiled by dominoes.

5. The five tetrominoes (familiar to players of the video game Tetris) are

relatives of dominoes made up of four small squares.

All together these five tetrominoes contain 20 squares so it is conceiv-

able that they could be used to tile a 4× 5 chessboard. Prove that this

is actually impossible.

6. State necessary and sufficient conditions for the existence of an Eulerian

circuit in a graph.

7. State necessary and sufficient conditions for the existence of an Eulerian

path in a graph.
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8. Construct magic squares of order 4 and 5.

9. A magic hexagon of order 2 would consist of filling-in the numbers from

1 to 7 in the hexagonal array below. The magic condition means that

each of the 9 “lines” of adjacent hexagons would have the same sum.

Is this possible?

10. Is there a magic hexagon of order 3?
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7.3 The pigeonhole principle

Exercises — 7.3

1. The statement that there are two non-bald New Yorkers with the same

number of hairs on their heads requires some careful estimates to justify

it. Please justify it.

2. A mathematician, who always rises earlier than her spouse, has de-

veloped a scheme – using the pigeonhole principle – to ensure that

she always has a matching pair of socks. She keeps only blue socks,

green socks and black socks in her sock drawer – 10 of each. So as

not to wake her husband she must select some number of socks from

her drawer in the early morning dark and take them with her to the

adjacent bathroom where she dresses. What number of socks does she

choose?

3. If we select 1001 numbers from the set {1, 2, 3, . . . , 2000} it is certain

that there will be two numbers selected such that one divides the other.

We can prove this fact by noting that every number in the given set

can be expressed in the form 2k · m where m is an odd number and

using the pigeonhole principle. Write-up this proof.

4. Given any set of 53 integers, show that there are two of them having

the property that either their sum or their difference is evenly divisible

by 103.

5. Prove that if 10 points are placed inside a square of side length 3, there

will be 2 points within
√

2 of one another.

6. Prove that if 10 points are placed inside an equilateral triangle of side

length 3, there will be 2 points within 1 of one another.
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7. Prove that in a simple graph (an undirected graph with no loops or

parallel edges) having n nodes, there must be two nodes having the

same degree.
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7.4 The algebra of combinations

Exercises — 7.4

1. Use the binomial theorem (with x = 1000 and y = 1) to calculate

10016.

2. Find (2x+ 3)5.

3. Find (x2 + y2)6.

4. The following diagram contains a 3-dimensional analog of Pascal’s tri-

angle that we might call “Pascal’s tetrahedron.” What would the next

layer look like?

1 1

1

1

1
1

1
3 3

3

3

13
3

6

1

2

2

2

1

5. The student government at Lagrange High consists of 24 members cho-

sen from amongst the general student body of 210. Additionally, there

is a steering committee of 5 members chosen from amongst those in

student government. Use the multiplication rule to determine two dif-

ferent formulas for the total number of possible governance structures.
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6. Prove the identity (
n

k

)
·
(
k

r

)
=

(
n

r

)
·
(
n− r
k − r

)
combinatorially.

7. Prove the binomial theorem.

∀n ∈ N, ∀x, y ∈ R, (x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk
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Chapter 8

Cardinality

8.1 Equivalent sets

Exercises — 8.1

1. Name four sets in the equivalence class of {1, 2, 3}.

2. Prove that set equivalence is an equivalence relation.

3. Construct a Venn diagram showing the relationships between the sets of

sets which are finite, infinite, countable, denumerable and uncountable.

4. Place the sets N, R, Q, Z, Z × Z, C, N2007 and ∅; somewhere on the

Venn diagram above. (Note to students (and graders): there are no

wrong answers to this question, the point is to see what your intuition

about these sets says at this point.)
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8.2 Examples of set equivalence

Exercises — 8.2

1. Prove that positive numbers of the form 3k+ 1 are equinumerous with

positive numbers of the form 4k + 2.

2. Prove that f(x) = c +
(x− a)(d− c)

(b− a)
provides a bijection from the

interval [a, b] to the interval [c, d].

3. Prove that any two circles are equinumerous (as sets of points).

4. Determine a formula for the bijection from (−1, 1) to the line y = 1

determined by vertical projection onto the upper half of the unit circle,

followed by projection from the point (0, 0).

5. It is possible to generalize the argument that shows a line segment is

equivalent to a line to higher dimensions. In two dimensions we would

show that the unit disk (the interior of the unit circle) is equinumerous

with the entire plane R× R. In three dimensions we would show that

the unit ball (the interior of the unit sphere) is equinumerous with the

entire space R3 = R × R × R. Here we would like you to prove the

two-dimensional case.

Gnomonic projection is a style of map rendering in which a portion of

a sphere is projected onto a plane that is tangent to the sphere. The

sphere’s center is used as the point to project from. Combine vertical

projection from the unit disk in the x–y plane to the upper half of the

unit sphere x2 + y2 + z2 = 1, with gnomonic projection from the unit

sphere to the plane z = 1, to deduce a bijection between the unit disk

and the (infinite) plane.
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8.3 Cantor’s theorem

Exercises — 8.3

1. Determine a substitution rule – a consistent way of replacing one digit

with another along the diagonal so that a diagonalization proof showing

that the interval (0, 1) is uncountable will work in decimal. Write up

the proof.

2. Can a diagonalization proof showing that the interval (0, 1) is uncount-

able be made workable in base-3 (ternary) notation?

3. In the proof of Cantor’s theorem we construct a set S that cannot

be in the image of a presumed bijection from A to P(A). Suppose

A = {1, 2, 3} and f determines the following correspondences: 1←→ ∅,
2←→ {1, 3} and 3←→ {1, 2, 3}. What is S?

4. An argument very similar to the one embodied in the proof of Can-

tor’s theorem is found in the Barber’s paradox. This paradox was

originally introduced in the popular press in order to give laypeople an

understanding of Cantor’s theorem and Russell’s paradox. It sounds

somewhat sexist to modern ears. (For example, it is presumed without

comment that the Barber is male.)

In a small town there is a Barber who shaves those men (and

only those men) who do not shave themselves. Who shaves

the Barber?

Explain the similarity to the proof of Cantor’s theorem.

5. Cantor’s theorem, applied to the set of all sets leads to an interesting

paradox. The power set of the set of all sets is a collection of sets, so

it must be contained in the set of all sets. Discuss the paradox and

determine a way of resolving it.
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6. Verify that the final deduction in the proof of Cantor’s theorem, “(y ∈
S =⇒ y /∈ S) ∧ (y /∈ S =⇒ y ∈ S),” is truly a contradiction.
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8.4 Dominance

Exercises — 8.4

1. How could the clerk at the Hilbert Hotel accommodate a countable

number of new guests?

2. Let F be the collection of all real-valued functions defined on the real

line. Find an injection from R to F . Do you think it is possible to find

an injection going the other way? In other words, do you think that F

and R are equivalent? Explain.

3. Fill in the details of the proof that dominance is an ordering relation.

(You may simply cite the C-B-S theorem in proving anti-symmetry.)

4. We can inject Q into Z by sending ±a
b

to ±2a3b. Use this and an-

other obvious injection to (in light of the C-B-S theorem) reaffirm the

equivalence of these sets.
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8.5 The continuum hypothesis and the gen-

eralized continuum hypothesis

No Exercises in this section.



Chapter 9

Proof techniques IV — Magic

9.1 Morley’s miracle

Exercises — 9.1

1. What value should we get if we sum all of the angles that appear around

one of the interior vertices in the finished diagram? Verify that all three

have the correct sum.

a

a
a

b?

c?
b??

c cc

c??

b
b
b

a? b? a??

c?

a?

2. In this section we talked about similarity. Two figures in the plane

are similar if it is possible to turn one into the other by a sequence of

mappings: a translation, a rotation and a scaling.
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Geometric similarity is an equivalence relation. To fix our notation, let

T (x, y) represent a generic translation, R(x, y) a rotation and S(x, y)

a scaling – thus a generic similarity is a function from R2 to R2 that

can be written in the form S(R(T (x, y))).

Discuss the three properties of an equivalence relation (reflexivity, sym-

metry and transitivity) in terms of geometric similarity.
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9.2 Five steps into the void

Exercises — 9.2

1. Do the algebra (and show all your work!) to prove that invariant de-

fined in this section actually has the value 1 for the set of all the men

occupying the x-axis and the lower half-plane.

2. “Escape of the clones” is a nice puzzle, originally proposed by Maxim

Kontsevich. The game is played on an infinite checkerboard restricted

to the first quadrant – that is the squares may be identified with points

having integer coordinates (x, y) with x > 0 and y > 0. The “clones”

are markers (checkers, coins, small rocks, whatever. . . ) that can move

in only one fashion – if the squares immediately above and to the right

of a clone are empty, then it can make a “clone move.” The clone moves

one space up and a copy is placed in the cell one to the right. We begin

with three clones occupying cells (1, 1), (2, 1) and (1, 2) – we’ll refer to

those three checkerboard squares as “the prison.” The question is this:

can these three clones escape the prison?

You must either demonstrate a sequence of moves that frees all three

clones or provide an argument that the task is impossible.
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9.3 Monge’s circle theorem

Exercises — 9.3

1. There is a scenario where the proof we have sketched for Monge’s circle

theorem doesn’t really work. Can you envision it? Hint: consider two

relatively large spheres and one that is quite small.
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