Mathematics 2200H - Mathematical Reasoning Trent University, Fall 2023
 Assignment \#9
 What is the linear order on the rationals missing?
 Due on Friday, 17 November.*

Recall that we defined the rationals by setting $\mathbb{Q}=\left\{[(a, b)]_{\sim} \mid a, b \in \mathbb{Z}\right.$ and $\left.b \neq 0\right\}$, where \sim is the equivalence relation on $\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})=\{(a, b) \mid a, b \in \mathbb{Z}$ and $b \neq 0\}$ which is defined by $(a, b) \sim(c, d) \Longleftrightarrow a d=b c$. Intuitively, the equivalence class $[(a, b)]_{\sim}$ is the official version of the rational number described by the ratio $\frac{a}{b}$. We then defned the common arithmetic operations on the rationals as follows:

$$
\begin{aligned}
& \because[(a, b)]_{\sim} \cdot[(c, d)]_{\sim}=[(a c, b d)]_{\sim}, \text { i.e. } \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d} . \\
& / \cdot[(a, b)]_{\sim} /[(c, d)]_{\sim}=[(a d, b c)]_{\sim}, \text { i.e. } \frac{a}{b} / \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c} . \\
& +.[(a, b)]_{\sim}+[(c, d)]_{\sim}=[(a d+b c, b d)]_{\sim}, \text { i.e. } \frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} . \\
& -.[(a, b)]_{\sim}-[(c, d)]_{\sim}=[(a d+b c, b d)]_{\sim}, \text { i.e. } \frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d} .
\end{aligned}
$$

With these definitions it is not hard to check that the identity elements for + and \cdot in the rationals are $0=[(0,1)]_{\sim}$ and $1=[(1,1)]_{\sim}$, respectively, and that these two operations are associative and commutative and satisfy the distributive laws. It is tedious, but not hard, to check that all of these operations are well-defined in that they don't depend on the particular choices of representatives from the equivalence classes involved.

We also defined the usual linear order on the rationals as follows:
$<.[(a, b)]_{\sim}<[(c, d)]_{\sim} \Longleftrightarrow a d<b c$, i.e. $\frac{a}{b}=\frac{c}{d} \Longleftrightarrow a d<b c$, provided that pick representatives from each equivalence class with $b>0$ and $d>0$. (Why can we?)
Again, it is tedious, but not too hard, to show that the relation $<$ is well-defined, is actually a linear order, and has the properties of having no endpoints and being dense-in-itself (or just dense), i.e. in this linear order there is a rational number between any two different rational numbers.

A linear order $\left(L,<_{L}\right)$ is said to be complete if every non-empty set $S \subset L$ that has an upper bound in the linear order, i.e. for which there is some $u \in L$ such that $s<_{L} u$ for all $s \in S$, has a least upper bound or supremum in the linear order, i.e. there is some $w \in L$ such that w is an upper bound for S and $w \leq u$ for every upper bound u in S.

1. Show that the usual linear order on the rational numbers is not complete. [10]

Hint: You need to find or manufacture a non-empty set of rationals which has an upper bound in the rationals but does not have a least upper bound in the rational numbers. Informally, it may help to think of the rationals as being embedded in the real numbers. (Which last we haven't officially defined yet.)

* Please submit your solutions via Blackboard's Assignments module, preferably as a single pdf. If submission on Blackboard fails, please submit your solutions to the instructor on paper or via email to sbilaniuk@ trentu.ca as soon as you can.

