Mathematics 2200H - Mathematical Reasoning Trent University, Fall 2023
 Assignment \#7

 Greatest Common Divisors As Linear Combinations?

 Greatest Common Divisors As Linear Combinations?
 Due on Friday, 3 November.*

Recall that the greatest common divisor of two positive integers a and b is $d=\operatorname{gcd}(a, b)$, often abbreviated to just (a, b) by number theorists, such that $d \mid a$ and $d \mid b$ (i.e. d is a divisor of both a and b) and d is the largest integer that divides both a and b. Before you tackle this assignment you should probably review the Euclidean algorithm for finding the greatest common divisor of two positive integers.

1. Show that if a and b are positive integers and $d=\operatorname{gcd}(a, b)$, then there exist integers x and y - not necessarily positive! - such that $d=a x+b y$. [7]

Hint: Run through the calculations in the Euclidean algorithm backwards ...
2. Use $\mathbf{1}$ to show that if a and b are positive integers, $d=\operatorname{gcd}(a, b)$, and c is a common divisor of a and b (i.e. $c \mid a$ and $c \mid b$), then $c \mid d$. [3]

[^0]
[^0]: * Please submit your solutions via Blackboard's Assignments module, preferably as a single pdf. If submission on Blackboard fails, please submit your solutions to the instructor on paper or via email to sbilaniuk@ trentu.ca as soon as you can.

